Results 161 to 170 of about 520,075 (309)

Electroactive Liquid Crystal Elastomers as Soft Actuators

open access: yesAdvanced Functional Materials, EarlyView.
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley   +1 more source

A MRI-Compatible Combined Mechanical Loading and MR Elastography Setup to Study Deformation-Induced Skeletal Muscle Damage in Rats

open access: gold, 2017
Jules L. Nelissen   +9 more
openalex   +2 more sources

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

Female levator ani muscle damage assessment in supine and upright position. [PDF]

open access: yesSci Rep
de Alba Alvarez I   +3 more
europepmc   +1 more source

Oral Dosed Organo‐Silica Nanoparticles Restore Glucose Homeostasis and β‐Cell Function in Diabetes Rats

open access: yesAdvanced Functional Materials, EarlyView.
An oral nanoplatform, MOP@T@D, which can maintain glucose homeostasis and restore islet β cells in diabetic rats is developed. It achieves efficient intestinal absorption and liver‐targeted delivery. The nanoparticle disintegrates only in response to hyperglycemia to release insulin on demand and provides antioxidant protection through selenoprotein ...
Chenxiao Chu   +14 more
wiley   +1 more source

Effective Sliding Motions of Vibration‐Induced Emission Stoppers in Mechanically Interlocked Molecules as Artificial Muscle Tougheners and In Situ Molecular Shuttling Sensors for Self‐Healable Mechano‐Fluorescent Polyurethane Organogels

open access: yesAdvanced Functional Materials, EarlyView.
The self‐healable ratiometric mechano‐fluorescent polyurethane (PU) organogel is constructed by incorporating a minor amount (ca. 1.5 wt.%) of the unconventional daisy chain rotaxane (as an artificial molecular muscle toughener) with specific sliding motions and ratiometric emission behaviors into the PU skeleton, which reveals the progressed intrinsic
Tu Thi Kim Cuc   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy