Results 271 to 280 of about 3,255,580 (393)

Bioinspired Shape Reconfigurable, Printable, and Conductive “E‐Skin” Patch with Robust Antibacterial Properties for Human Health Sensing

open access: yesAdvanced Functional Materials, EarlyView.
In this article, Hojin Kim, Sayan Deb Dutta, and co‐workers report a shape‐reconfigurable, 3D printable, and highly adhesive slime‐like ‘electronic skin’ or ‘E‐skin’ patch for human health sensing and tissue engineering applications. The dual reinforcement of hydrogel patch with carbon nanotubes (CNTs) and cellulose nanocrystals (CNCs) improve the ...
Hojin Kim   +6 more
wiley   +1 more source

Possibilities of Using Tensiomyography to Assess Early Changes in Muscle Function in Patients with Multiple Sclerosis-Pilot Study. [PDF]

open access: yesJ Clin Med
Kurzeja P   +7 more
europepmc   +1 more source

Laser‐Induced Graphene‐Assisted Patterning and Transfer of Silver Nanowires for Ultra‐Conformal Breathable Epidermal Electrodes in Long‐Term Electrophysiological Monitoring

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a novel method using laser‐induced graphene (LIG) to enable high‐yield transfer of silver nanowire (AgNW) networks onto ultra‐low modulus, breathable silicone substrates. This approach creates ultra‐conformal epidermal electrodes (≈50 µm) for long‐term, high‐fidelity electrophysiological monitoring, even in challenging conditions ...
Jiuqiang Li   +10 more
wiley   +1 more source

Differential Compartmentalization of Enzymatic Reactions for Lactate Signaling Across Protocells

open access: yesAdvanced Functional Materials, EarlyView.
Two populations of protocells consisting of giant unilamellar vesicles containing active species and distinct artificial organelles are competent of collective behavior by mimicking production, intercellular communication, and detection of the bioinspired signal molecule lactate. Enzymatic cascade reactions within artificial organelles demonstrate that
Arianna Balestri   +4 more
wiley   +1 more source

Highly Sensitive Cuffless Blood Pressure Monitoring with Selective Laser‐Sintered Liquid Metal Conductors

open access: yesAdvanced Functional Materials, EarlyView.
A soft, compact, and cuffless system for continuous blood pressure monitoring using laser‐sintered liquid metal conductors is developed. The stretchability and sensitivity of the device enable real‐time, non‐invasive tracking of blood pressure, including recovery after exercise. This wearable device offers a practical solution for managing hypertension
Jung Jae Park   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy