Results 281 to 290 of about 1,845,718 (345)

Next‐Generation Bio‐Reducible Lipids Enable Enhanced Vaccine Efficacy in Malaria and Primate Models

open access: yesAdvanced Functional Materials, EarlyView.
Structure–activity relationship (SAR) optimization of bio‐reducible ionizable lipids enables the development of highly effective lipid nanoparticle (LNP) mRNA vaccines. Lead LNPs show superior tolerability and antibody responses in rodents and primates, outperforming approved COVID‐19 vaccine lipids.
Ruben De Coen   +30 more
wiley   +1 more source

Forearm muscles in the black lion tamarin (<i>Leontopithecus chrysopygus</i>). [PDF]

open access: yesBraz J Vet Med
Souza EC   +6 more
europepmc   +1 more source

Biosupercapacitors for Human‐Powered Electronics

open access: yesAdvanced Functional Materials, EarlyView.
Biosupercapacitors are emerging as biocompatible and integrative energy systems for next‐generation bioelectronics, offering rapid charge–discharge performance and mechanical adaptability. This review systematically categorizes their applications from external to organ‐level systems and highlights their multifunctional roles in sensing, actuation, and ...
Suhyeon Kim   +7 more
wiley   +1 more source

Nanoparticles Decorated Nanotubes: Advanced Local Therapies From Anodized Nanoengineered Titanium Implants

open access: yesAdvanced Functional Materials, EarlyView.
This comprehensive review explores therapeutic titanium implants designed to enhance integration and provide superior antibacterial efficacy. It is focused on anodized titanium implants with titania nanotubes (TNTs) loaded with nanoparticles (NPs) for local therapeutic release, enhancing bioactivity and bactericidal functions.
Divya Chopra   +5 more
wiley   +1 more source

Enhancing Mechanical Deformability of Rigid Conjugated Polymers through Functional Additive‐Induced Persistence Length Modulation

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates a molecular strategy to enhance the stretchability of conjugated polymers by incorporating plasticizing molecular additives (PMAs). PMAs reduce the persistence length and promote chain entanglement, enabling deformable thin films with preserved electrical performance. A systematic analysis combining rheology, neutron scattering,
Sein Chung   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy