Results 111 to 120 of about 94,921 (285)
Hepatocyte growth factor, a key tumor-promoting factor in the tumor microenvironment [PDF]
The tumor microenvironment plays a key role in tumor development and progression. Stromal cells secrete growth factors, cytokines and extracellular matrix proteins which promote growth, survival and metastatic spread of cancer cells.
Galemmo, Robert +3 more
core +2 more sources
Polycarbonate nanogels enable lipid‐free delivery of anti‐MFAP‐5 siRNA into cancer‐associated fibroblasts (CAF) in hepatocellular carcinoma. In a cirrhotic murine model, this approach silences MFAP‐5, reduces fibroblast activation, and suppresses tumor growth by inhibiting NOTCH/Hes1‐driven angiogenesis. CAF‐targeted MFAP‐5 RNAi and conserved signaling
Paul Schneider +20 more
wiley +1 more source
Insights into the molecular mechanism of Sjogren's syndrome [PDF]
Sjogren’s syndrome (SS) is a chronic autoimmune disease, that affects primarily salivary and lacrimal glands, leading to increased morbidity. Recent studies indicate that loss of salivary gland function is associated with defective cell polarity ...
Langara, Hans A.
core
Scars exhibit vascular abnormal alterations, including upregulated NRP1 expression in endothelial cells, increased vascular density and branching, compromised vessel wall integrity, and incomplete pericyte coverage. Therapeutic targeting of NRP1 through hydrogel spray delivery offers a promising approach to normalize aberrant vasculature and prevent ...
Yu Wang +11 more
wiley +1 more source
RUNX2 Activation in Fibro/Adipogenic Progenitors Promotes Muscle Fibrosis in Muscular Dystrophy
This study revealed a novel role of the chemokine‐TGF‐β1‐RUNX2 axis in determining the fate of FAP differentiation and modulating muscle fibrosis in patients and mice with muscular dystrophies. ABSTRACT Clinical evidence indicates concurrent muscle inflammation and fibrosis in muscular dystrophies (MDs); however, the molecular mechanisms underlying ...
Pengkai Wu +12 more
wiley +1 more source
Nuclear Factor I‐B Delays Liver Fibrosis by Inhibiting Chemokine Ligand 5 Transcription
This study identifies the transcription factor Nuclear Factor I‐B (NFIB) as a key suppressor of liver fibrosis. NFIB expression declines during hepatic stellate cell activation, and its overexpression reduces fibrosis in mice models. The mechanism involves NFIB directly repressing chemokine C─C motif ligand 5 (CCL5), thereby alleviating oxidative ...
Qianqian Chen +14 more
wiley +1 more source
Myofibroblasts (MFB) are found in most tissues of the body. They have the matrix-producing functions of fibroblasts and contractile properties that are known from smooth muscle cells. Fundamental work of the last decades has shed remarkable light on their origin, biological functions and role in disease.
Jiri Kanta +2 more
openaire +3 more sources
Cryopreserved lung‐humanized mice overcome the dependency to fresh tissues and permit head‐to‐head profiling of all four human common cold coronaviruses versus SARS‐CoV‐2 infection; the model validates Paxlovid efficacy against HKU1 and, when coupled with human immune‐system engraftment, enables interrogation of lung‐resident human immunity and HKU1 ...
Chunyu Cheng +9 more
wiley +1 more source
Mao and colleagues uncover a STAT2/IRF9‐dependent signaling axis through which tubular epithelial cell (TEC)‐derived IFN‐α induces gasdermin D (GSDMD)‐mediated pyroptosis in macrophages. This TEC‐macrophage feedback loop amplifies renal inflammation and fibrosis, providing mechanistic insight into the progression of chronic kidney disease and revealing
Yiping Xu +12 more
wiley +1 more source
Hepatic endothelial Alk1 signaling protects from development of vascular malformations while maintaining organ‐specific endothelial differentiation and angiocrine portmanteau of the names Wingless and Int‐1 signaling. Abstract Background and Aims In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with ...
Christian David Schmid +20 more
wiley +1 more source

