Results 81 to 90 of about 133,063 (223)

Recent Advances in Robotic Systems for Robot‐Assisted Transoral Surgical Procedures: A Systematic Review

open access: yesAdvanced Robotics Research, EarlyView.
This review systematically examines robotic systems for robot‐assisted transoral surgical procedures, classifying them based on transoral access depth, and evaluates their fundamental design principles, mechanical innovations, algorithmic advancements, and clinical implementation status.
Yuhao Shi   +5 more
wiley   +1 more source

Liquiritin Exerts a Dual Effect on BMSCs Osteogenic Differentiation and Fracture Healing by Activating the ERK/JNK Pathway and Providing Antioxidant Protection

open access: yesAdvanced Therapeutics, EarlyView.
Liquiritin enhances the osteogenic differentiation of BMSCs and promotes fracture healing through the activation of the ERK/JNK signaling pathway and by exerting antioxidant protective effects. Abstract Liquiritin, a flavonoid from Glycyrrhiza uralensis L., has diverse pharmacological properties, but its impact on fracture healing is unexplored.
Haijun Mao   +6 more
wiley   +1 more source

Exome Sequencing Reveals the Genetic Architecture of Non‐syndromic Orofacial Clefts and Identifies BOC as a Novel Causal Gene

open access: yesAdvanced Science, EarlyView.
Nonsyndromic orofacial clefts (NSOFCs) are the most common craniofacial defects. Exome sequencing of 214 sporadic cases sheds new light on its genetic architecture and identifies many candidate pathogenic variants. Furthermore, functional studies establish BOC as a novel causal gene and reveal an unusual two‐locus model of inheritance via the epistatic
Qing He   +16 more
wiley   +1 more source

IncRNA‐ZFAS1, an Emerging Gate‐Keeper in DNA Damage‐Dependent Transcriptional Regulation

open access: yesAdvanced Science, EarlyView.
LncZFAS1 plays a crucial role during DNA damage response in mammalian cells. Loss of lncZFAS1 results in deficient DNA lesion removal and reduced cell viability. Mechanistically, lncZFAS1 modulates RNAPII phosphorylation and transcription and thereby promotes both GG‐NER and TC‐NER upon UV damage.
Jiena Liu   +10 more
wiley   +1 more source

Epigenetic Activation of CCDC183‐AS1 Promotes Osteoclastogenesis and Prostate Cancer Bone Metastasis Through the FUBP1/LIGHT Axis

open access: yesAdvanced Science, EarlyView.
CCDC183‐AS1 overexpression enhanced the ability of PCa cells to spread to the bone by inducing osteoclastogenesis. Mechanistically, CCDC183‐AS1 interacted with FUBP1 and enhanced its stability, which promoted the transcription of TNFSF14 (LIGHT). Copy number gain‐induced KDM5C epigenetically upregulated CCDC183‐AS1 expression by recruiting TET1 to the ...
Chuandong Lang   +10 more
wiley   +1 more source

PROS1‐MERTK Axis Drives Tumor Microenvironment Crosstalk and Progression in Papillary Thyroid Microcarcinoma

open access: yesAdvanced Science, EarlyView.
Identifying biomarkers associated with PTC, particularly those related to PTMC progression, is crucial for precise risk stratification and treatment planning. This study utilized single‐cell RNA sequencing on 19 surgical tissue specimens, confirmed PROS1/MERTK axis as a critical component of the cellular microenvironment and a key regulatory mechanism ...
Wenqian Zhang   +11 more
wiley   +1 more source

PTPN2 Inhibition Disrupts Mitochondrial Renewal and Blocks TFRC‐Mediated Mitophagy to Exert Anti‐Tumor Activities in ALK‐Positive Anaplastic Large Cell Lymphoma

open access: yesAdvanced Science, EarlyView.
CRISPR/Cas9 screening reveals PTPN2 as essential for ALK+ ALCL survival. PTPN2 regulates TFRC to promote PINK1‐PRKN mitophagy. Oral PTPN2 inhibitor ABBV‐CLS‐484 disrupts mitochondrial renewal and blocks TFRC‐mediated mitophagy to exert anti‐tumor activities, supporting clinical development for ALK+ ALCL.
Wei‐Ting Wang   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy