Results 161 to 170 of about 673,655 (286)

Introducing Pure Calcium Orthophosphate Gels and Aerogels

open access: yesAdvanced Functional Materials, EarlyView.
The synthesis of calcium phosphate‐based gels and aerogels is reported, which exhibit highly porous structures built up of networks of nanoparticles. In case of amorphous aerogels, this leads to yet unmatched specific BET surface areas, making these materials especially interesting for biomedical applications.
Oliver Jeske   +4 more
wiley   +1 more source

SI‐bioATRP in Mesoporous Silica for Size‐Exclusion Driven Local Polymer Placement

open access: yesAdvanced Functional Materials, EarlyView.
An enzyme‐catalyzed surface‐initiated atom transfer radical polymerization (SI‐bioATRP) of an anionic monomer within mesoporous silica particles, using hemoglobin as a catalyst, allows for controlling the location of the formed polymer via size‐exclusion effects between the nanopores and the biomacromolecules, thereby opening routes to functional ...
Oleksandr Wondra   +8 more
wiley   +1 more source

Bio‐Inspired Nanoarchitected LiFePO4 Cathodes

open access: yesAdvanced Functional Materials, EarlyView.
Lithium iron phosphate (LFP) is synthesized using a bio‐inspired method, using acidic macromolecules similar to those found in many calcareous mineralized organisms to modulate the morphology and crystal growth of LFP‐carbon composite particles. The observations from this process indicate a non‐classical crystallization process, which subsequently ...
Parawee Pumwongpitak   +8 more
wiley   +1 more source

Atomic‐Level Dual‐Cation Engineering Enables High‐Performance Na4VMn(PO4)3 Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun   +8 more
wiley   +1 more source

Enhanced Nitric Oxide Electroreduction to Ammonia via Modulating Spin‐Polarization of Fe Single‐Atom Catalysts

open access: yesAdvanced Functional Materials, EarlyView.
A strategic spin‐polarization suppression in Fe single‐atom catalysts is proposed to enhance electrocatalytic reduction of NO to NH3. Employing a top‐down electrospinning strategy, self‐supported FeSAC with Fe‐N3S1 coordination structure and spin‐state transition is engineered from high‐spin to low‐spin.
Jialing Song   +13 more
wiley   +1 more source

Coherent Control of Nitrogen Nuclear Spins via the VB−${\rm V}_B^-$‐Center in Hexagonal Boron Nitride

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates coherent control of 15N nuclear spins coupled to VB−${\text{V}}_{\text{B}}^{-}$ centers in isotope‐enriched hexagonal boron nitride. Selective addressing via spin‐state mixing enables Rabi driving, quantum gates, and coherence times exceeding 10 μs$\umu{\rm s}$.
Adalbert Tibiássy   +6 more
wiley   +1 more source

Modulating Interfacial Potential Gradients in Metal−Carbon Catalysts via Phase‐Engineering for Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim   +13 more
wiley   +1 more source

Dual‐Interface‐Dominant Cathode Architectures Enabling Fast Sulfur Redox and Stable Interfaces in All‐Solid‐State Li‐S Batteries

open access: yesAdvanced Functional Materials, EarlyView.
An optimized carbon host nanostructure enables a dual‐interface‐dominant architecture in sulfur cathodes of solid‐state Li‐S batteries by selectively forming sulfur|carbon and sulfur|solid electrolyte interfaces. This tailored interfacial configuration accelerates sulfur redox kinetics by establishing enriched Li+/e– transport networks, while ...
Zhao Yang   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy