Results 241 to 250 of about 1,241,119 (307)

Liquid Metal Microrobots for Magnetically Guided Transvascular Navigation

open access: yesAdvanced Materials, EarlyView.
Liquid metal‐based microrobots combine magnetic steering, intrinsic X‐ray visibility and softness, to navigate blood vessels even against flow. Under clinically relevant magnetic fields, liquid metal microrobots roll along vessel walls, cross endothelial barriers, and accumulate in target tissues.
Xiaohui Ju   +7 more
wiley   +1 more source

Multiphysics‐Driven Assembly of Biomimetic Vesicles

open access: yesAdvanced Materials, EarlyView.
Artificial extracellular vesicles, derived from cell membranes, are manufactured using a multiphysics‐integrated microfluidic platform that combines nanoknife membrane rupture, herringbone chaotic mixing, and acoustothermal modulation. This standardizable workflow enables the predictable control of vesicle formation and therapeutic loading, while ...
Timofei Solodko   +16 more
wiley   +1 more source

Two‐Photon 3D Printing of Functional Microstructures Inside Living Cells

open access: yesAdvanced Materials, EarlyView.
This study demonstrates 3D printing inside living cells by using two‐photon photo‐lithography. A bio‐compatible photoresist is injected into cells and selectively polymerized with a femtosecond laser, creating custom‐shaped intracellular structures with submicron resolution.
Maruša Mur   +4 more
wiley   +1 more source

062/100 Near Death Experience

open access: green, 2020
Tomi; id_orcid 0009-0001-2223-9931 Knuutila
openalex   +1 more source

Ultrasound in Women's Health: Mechanisms, Applications, and Emerging Opportunities

open access: yesAdvanced Materials, EarlyView.
As healthcare moves toward decentralization, ultrasound technologies are evolving from strictly imaging tools in clinical settings into versatile diagnostic and therapeutic platforms, with growing roles addressing women's health needs. This review highlights how ultrasound's underlying physical mechanisms can be harnessed to reduce disparities in women'
Sarah B. Ornellas   +7 more
wiley   +1 more source

Multi‐scale Engineered Vasculature and Hierarchical Porosity via Volumetric Bioprinting‐Guided Photopolymerization‐Induced Phase Separation

open access: yesAdvanced Materials, EarlyView.
Vascularization in bioprinted hydrogels is limited by nanoscale porosity in hydrogel bionks. Volumetric bioprinting of gelatin–norbornene phase‐separating hydrogels permits to create centimeter‐scale constructs featuring interconnected multi‐scale porosity. Light dose gradients result in spatially controlled pore dimensions. Capillary‐scale vessels are
Oksana Y. Dudaryeva   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy