Results 171 to 180 of about 56,485 (256)

Scaling‐Up of Structural Superlubricity: Challenges and Opportunities

open access: yesAdvanced Functional Materials, EarlyView.
At increasing length‐scales, structural superlubricity (SSL) faces challenges from physical and chemical energy dissipation pathways. This study reviews recent experimental and theoretical progress on these challenges facing the scaling‐up of SSL, as well as perspectives on future directions for realizing and manipulating macroscale superlubricity ...
Penghua Ying   +4 more
wiley   +1 more source

Tunable Tactile Synapses Enabled by Erasable Doping in Iongel‐Gated Nanotube Network Transistors

open access: yesAdvanced Functional Materials, EarlyView.
Artificial tactile synaptic sensors are realized by an iongel‐gated single‐walled carbon nanotube (SWCNT) transistor with reversible doping characteristics. The device senses and memorizes tactile stimuli and exhibits gate bias‐dependent excitatory or inhibitory synaptic behavior.
Yan Huang   +5 more
wiley   +1 more source

All‐Cellulose‐Based Photonic Glitters

open access: yesAdvanced Functional Materials, EarlyView.
Uniform, disc‐shaped photonic CNC glitters with adjustable structural colors and diameters are fabricated on hydrophilic ethyl cellulose films using electrospray deposition. By employing patterned ethyl cellulose films with pre‐designed hydrophilic regions, photonic patterns can be created with these all‐cellulose‐based glitters, demonstrating their ...
Ting Wang   +5 more
wiley   +1 more source

Ideal Molecular Sieving with a Dense MOF for Helium Upgrading with Highly Diffusion Selective Mixed Matrix Membranes

open access: yesAdvanced Functional Materials, EarlyView.
The separation of Helium gas from natural gas is challenging but highly important. MIL‐116(Ga), a “non‐porous” metal–organic framework is used as a molecular sieve to separate He from CH4. Druse‐like MIL‐116(Ga) particles are integrated into polysulfone mixed matrix membranes.
Ayisha Komal   +10 more
wiley   +1 more source

Carbon Nanotube 3D Integrated Circuits: From Design to Applications

open access: yesAdvanced Functional Materials, EarlyView.
As Moore's law approaches its physical limits, carbon nanotube (CNT) 3D integrated circuits (ICs) emerge as a promising alternative due to the miniaturization, high mobility, and low power consumption. CNT 3D ICs in optoelectronics, memory, and monolithic ICs are reviewed while addressing challenges in fabrication, design, and integration.
Han‐Yang Liu   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy