Results 191 to 200 of about 22,264 (276)

Analog Signal Summation for Reinforcement Learning via Simultaneous Light–Voltage Modulation in a Synaptic Device

open access: yesAdvanced Science, EarlyView.
To overcome limitations of conventional AI hardware, a light‐voltage dual‐modulating synaptic (LVDS) transistor using an IGZO/InAs quantum dot hybrid structure is proposed. LVDS transistor enables analog summation for Dueling Deep Q‐Networks by independently modulating memory via optical and electrical stimuli.
Dong Gue Roe   +10 more
wiley   +1 more source

Cation‐Driven Valence Change Mechanism in 2D AgCrS2 for Ultralow‐Power and Reliable Memristors

open access: yesAdvanced Science, EarlyView.
A 2D AgCrS2 volatile memristor is shown to switch via a cation‐driven valence change mechanism, where Ag+ reversibly intercalates into tetrahedral vacancies between CrS2 layers to form a conductive Ag2CrS2 pathway without elemental Ag metallization. The device exhibits 0.2 V switching, nA‐compliance power down to 200 pW, and endurance beyond 3 × 105 ...
Yueqi Su   +8 more
wiley   +1 more source

Single‐Crystal PZT‐Driven Organic Piezo‐Phototronic Adaptive Transistors Toward Advanced Spatiotemporal Visual Computing

open access: yesAdvanced Science, EarlyView.
Here, we propose a single‐crystal PZT‐based piezo‐phototronic organic adaptive memory transistor (OAMT), achieving a record memory window capacity factor (γ) of 0.87 at a low SS of 200 mV/decade via efficient multi‐field control. The device achieves a high recognition accuracy ∼ 90% in neuromorphic simulations, demonstrates robust fault tolerance under
Chenhao Xu   +8 more
wiley   +1 more source

Leaky‐Integrate‐Fire Neuron via Synthetic Antiferromagnetic Coupling and Spin‐Orbit Torque

open access: yesAdvanced Science, EarlyView.
A spintronic leaky‐integrate‐and‐fire neuron is realized using Spin Orbit Torque driven domain‐wall motion for integration and synthetic antiferromagnetic coupling for the leaky process. The specialized Hall‐bar geometry enables controlled DW dynamics, achieving repeatable integration and firing events. This compact, CMOS‐compatible design highlights a
Badsha Sekh   +8 more
wiley   +1 more source

All‐Optical Control of Bidirectional Polarization Switching in Ferroelectric Heterostructures for Neuromorphic and In‐Memory Computing

open access: yesAdvanced Science, EarlyView.
We propose an optical ferroelectric field‐effect transistor, composed of a MoS2/CIPS heterostructure, demonstrates the feasibility of all‐optical nonvolatile memory, neuromorphic computing, and logic‐in‐memory operations. The device exhibits reversible light‐controlled memory states, retina‐like synaptic plasticity, and wavelength‐selective ...
Jingjie Niu   +7 more
wiley   +1 more source

Multisensory Neuromorphic Devices: From Physics to Integration. [PDF]

open access: yesNanomicro Lett
Gui A, Mu H, Yang R, Zhang G, Lin S.
europepmc   +1 more source

Oxide Semiconductor Thin‐Film Transistors for Low‐Power Electronics

open access: yesAdvanced Science, EarlyView.
This review explores the progress of oxide semiconductor thin‐film transistors in low‐power electronics. It illustrates the inherent material advantages of oxide semiconductor, which enable it to meet the low‐power requirements. It also discusses current strategies for reducing power consumption, including interface and structure engineering.
Shuhui Ren   +8 more
wiley   +1 more source

Multimodal Wearable Biosensing Meets Multidomain AI: A Pathway to Decentralized Healthcare

open access: yesAdvanced Science, EarlyView.
Multimodal biosensing meets multidomain AI. Wearable biosensors capture complementary biochemical and physiological signals, while cross‐device, population‐aware learning aligns noisy, heterogeneous streams. This Review distills key sensing modalities, fusion and calibration strategies, and privacy‐preserving deployment pathways that transform ...
Chenshu Liu   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy