Results 11 to 20 of about 1,250,492 (368)
Neutron-Neutron Fusion [PDF]
Physics Letters B, 2005 The neutron-neutron fusion process, $nn\to de\nu$, at very low neutron
energies is studied in the framework of pionless effective field theory that
incorporates dibaryon fields.Ando, Ando, Ando, Ando, Beane, Beane, Bedaque, Bedaque, Bedaque, Butler, Butler, Butler, Butler, Chen, Chen, Chen, Crawford, de Téramond, Detmold, Eidelman, Fukugita, Gardestig, González Trotter, Hardy, Howell, Huhn, Kammel, Kaplan, Kaplan, Kong, Kong, Kong, Kubodera, Kubodera, Kuniharu Kubodera, Lensky, Miller, Nakamura, Nakamura, Nakamura, Park, Park, Park, Park, Phillips, Phillips, Rho, Serebrow, Shung-ichi Ando, Sirlin, Towner, Weinberg, Weinberg, Šlaus +53 morecore +3 more sourcesNeutron-mirror neutron mixing and neutron stars [PDF]
The European Physical Journal C, 2021 AbstractThe oscillation of neutron n into mirror neutron $$n'$$ n ′ , its mass degenerate partner from dark mirror sector, can gradually transform the neutron stars into the mixed stars consisting in part of mirror dark matter. In quark stars $$n-n'$$ Berezhiani Z., Biondi R., Mannarelli M., Tonelli F. +3 moreopenaire +4 more sourcesConstraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations [PDF]
Astrophysical Journal Letters, 2021 In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints.G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S. Nissanke, A. Schwenk, T. E. Riley, A. Watts, J. Lattimer, W. Ho +9 moresemanticscholar +1 more sourceMulti-messenger Observations of a Binary Neutron Star Merger [PDF]
Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019), 2019 On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.B. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya, C. Affeldt, M. Afrough, B. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. Aguiar, L. Aiello, A. Ain, P. Ajith, B. Allen, G. Allen, A. Allocca, P. Altin, A. Amato, A. Ananyeva, S. Anderson, W. Anderson, S. Angelova, S. Antier, S. Appert, K. Arai, M. Araya, J. Areeda, N. Arnaud, K. Arun, S. Ascenzi, G. Ashton, M. Ast, S. Aston, P. Astone, D. V. Atallah, P. Aufmuth, C. Aulbert, K. AultONeal, C. Austin, A. Ávila-Álvarez, S. Babak, P. Bacon, M. Bader, S. Bae, P. Baker, F. Baldaccini, G. Ballardin, S. Ballmer, S. Banagiri, J. Barayoga, S. Barclay, B. Barish, D. Barker, K. Barkett, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, S. Barthelmy, J. Bartlett, I. Bartos, R. Bassiri, A. Basti, J. Batch, M. Bawaj, J. Bayley, M. Bazzan, B. Bécsy, C. Beer, M. Bejger, I. Belahcene, A. Bell, B. Berger, G. Bergmann, J. Bero, C. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare, I. Bilenko, G. Billingsley, C. Billman, J. Birch, R. Birney, O. Birnholtz, S. Biscans, S. Biscoveanu, A. Bisht, M. Bitossi, C. Biwer, M. Bizouard, J. Blackburn, J. Blackman, C. Blair, D. Blair, R. Blair, S. Bloemen, O. Bock, N. Bode, M. Boer, G. Bogaert, A. Bohé, F. Bondu, E. Bonilla, R. Bonnand, B. A. Boom, R. Bork, V. Boschi, S. Bose, K. Bossie, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. Brady, M. Branchesi, J. Brau, T. Briant, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, J. Broida, A. Brooks, D. Brown, D. Brown, S. Brunett, C. Buchanan, A. Buikema, T. Bulik, H. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. C. Bustillo, T. Callister, E. Calloni, J. Camp, M. Canepa, P. Canizares, K. Cannon, H. Cao, J. Cao, C. Capano, E. Capocasa, F. Carbognani, S. Caride, M. Carney, J. C. Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, C. Cepeda, P. Cerdá-Durán, G. Cerretani, E. Cesarini, S. Chamberlin, M. Chan, S. Chao, P. Charlton, E. Chase, É. Chassande-Mottin, D. Chatterjee, K. Chatziioannou, B. Cheeseboro, H. Chen, X. Chen, Y. Chen, H.-P. Cheng, H. Chia, A. Chincarini, A. Chiummo, T. Chmiel, H. Cho, M. Cho, J. Chow, N. Christensen, Q. Chu, A. J. Chua, S. Chua, A. K. Chung, S. Chung, G. Ciani, R. Ciolfi, C. Cirelli, A. Cirone, F. Clara, J. Clark, P. Clearwater, F. Cleva, C. Cocchieri, E. Coccia, P. Cohadon, D. Cohen, A. Colla, C. Collette, L. Cominsky, M. C. Jr., L. Conti, S. Cooper, P. Corban, T. Corbitt, I. Cordero-Carrión, K. Corley, N. Cornish, A. Corsi, S. Cortese, C. Costa, M. Coughlin, S. Coughlin, J. Coulon, S. Countryman, P. Couvares, P. Covas, E. Cowan, D. Coward, M. Cowart, D. Coyne, R. Coyne, J. Creighton, T. Creighton, J. Cripe, S. Crowder, T. Cullen, A. Cumming, L. Cunningham, E. Cuoco, T. D. Canton, G. Dalya, S. Danilishin, S. D’Antonio, K. Danzmann, A. Dasgupta, C. F. Da Silva Costa, V. Dattilo, I. Dave, M. Davier, D. Davis, E. Daw, B. Day, S. De, D. DeBra, J. Degallaix, M. D. Laurentis, S. Deléglise, W. D. Pozzo, N. Demos, T. Denker, T. Dent, R. Pietri, V. Dergachev, R. Rosa, R. Derosa, C. Rossi, R. DeSalvo, O. D. Varona, J. Devenson, S. Dhurandhar, M. Díaz, L. Fiore, M. Giovanni, T. D. Girolamo, A. Lieto, S. D. Pace, I. Palma, F. Renzo, Zoheyr Doctor, V. Dolique, F. Donovan, K. Dooley, S. Doravari, I. Dorrington, R. Douglas, M. D. Álvarez, T. Downes, M. Drago, C. Dreissigacker, J. Driggers, Z. Du, M. Ducrot, P. Dupej, S. Dwyer, T. Edo, M. Edwards, A. Effler, P. Ehrens, J. Eichholz, S. Eikenberry, R. Eisenstein, R. Essick, D. Estevez, Z. Etienne, T. Etzel, M. Evans, T. Evans, M. Factourovich, V. Fafone, H. Fair, S. Fairhurst, X. Fan, S. Farinon, B. Farr, W. Farr, E. Fauchon-Jones, Marc Favata, M. Fays, C. Fee, H. Fehrmann, J. Feicht, M. Fejer, Á. Fernández-Galiana, I. Ferrante, E. Ferreira, F. Ferrini, F. Fidecaro, D. Finstad, I. Fiori, D. Fiorucci, M. Fishbach, R. Fisher, M. Fitz-Axen, R. Flaminio, M. Fletcher, H. Fong, J. Font, P. Forsyth, S. Forsyth, J. Fournier, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, V. Frey, E. Fries, P. Fritschel, V. Frolov, P. Fulda, M. Fyffe, H. Gabbard, B. Gadre, S. Gaebel, J. Gair, L. Gammaitoni, M. Ganija, S. Gaonkar, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, G. Gaur, V. Gayathri, N. Gehrels, G. Gemme, Eric Genin, A. Gennai, D. George, J. George, L. Gergely, V. Germain, S. Ghonge, A. Ghosh, A. Ghosh, S. Ghosh, J. Giaime, K. Giardina, A. Giazotto, K. Gill, L. Glover, E. Goetz, R. Goetz, S. Gomes, B. Goncharov, G. González, J. M. Castro, A. Gopakumar, M. Gorodetsky, S. Gossan, M. Gosselin, R. Gouaty, A. Grado, C. Graef, M. Granata, A. Grant, S. Gras, C. Gray, G. Greco, A. Green, E. Gretarsson, B. Griswold, P. Groot, H. Grote, S. Grunewald, P. Gruning, G. Guidi, X. Guo, A. Gupta, M. Gupta, K. Gushwa, E. Gustafson, R. Gustafson, O. Halim, B. Hall, E. Hall, E. Hamilton, G. Hammond, M. Haney, M. Hanke, J. Hanks, C. Hanna, M. Hannam, O. Hannuksela, J. Hanson, T. Hardwick, J. Harms, G. Harry, I. Harry, M. Hart, C. Haster, K. Haughian, J. Healy, A. Heidmann, M. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. Heng, J. Hennig, A. Heptonstall, M. Heurs, S. Hild, T. Hinderer, D. Hoak, D. Hofman, K. Holt, D. Holz, P. Hopkins, C. Horst, J. Hough, E. Houston, E. Howell, A. Hreibi, Y. Hu, E. Huerta, D. Huet, B. Hughey, S. Husa, S. Huttner, T. Huynh--Dinh, N. Indik, R. Inta, G. Intini, H. N. Isa, J. Isac, M. Isi, B. Iyer, K. Izumi, T. Jacqmin, K. Jani, P. Jaranowski, S. Jawahar, F. Jiménez-Forteza, W. Johnson, D. Jones, R. Jones, R. Jonker, L. Ju, J. Junker, C. Kalaghatgi, V. Kalogera, B. Kamai, S. Kandhasamy, G. Kang, J. Kanner, S. Kapadia, S. Karki, K. Karvinen, M. Kasprzack, M. Katolik, E. Katsavounidis, W. Katzman, S. Kaufer +499 moresemanticscholar +2 more sourcesMeasurement of the Permanent Electric Dipole Moment of the Neutron. [PDF]
Physical Review Letters, 2020 We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons.C. Abel, S. Afach, N. Ayres, C. A. Baker, G. Ban, G. Bison, K. Bodek, V. Bondar, M. Burghoff, E. Chanel, Z. Chowdhuri, P. Chiu, B. Clement, C. Crawford, M. Daum, S. Emmenegger, L. Ferraris-Bouchez, M. Fertl, P. Flaux, B. Franke, A. Fratangelo, P. Geltenbort, K. Green, W. Griffith, M. G. D. Grinten, Z. Grujić, P. Harris, L. Hayen, W. Heil, R. Henneck, V. Hélaine, N. Hild, Z. Hodge, M. Horras, P. Iaydjiev, S. Ivanov, M. Kasprzak, Y. Kermaidic, K. Kirch, A. Knecht, P. Knowles, H. Koch, P. Koss, S. Komposch, A. Kozela, A. Kraft, J. Krempel, M. Kuźniak, B. Lauss, T. Lefort, Y. Lemière, A. Leredde, P. Mohanmurthy, A. Mtchedlishvili, M. Musgrave, O. Naviliat-Cuncic, D. Pais, F. Piegsa, E. Pierre, G. Pignol, C. Plonka-Spehr, P. Prashanth, G. Quéméner, M. Rawlik, D. Rebreyend, I. Rienäcker, D. Ries, S. Roccia, G. Rogel, D. Rozpędzik, A. Schnabel, P. Schmidt-Wellenburg, N. Severijns, D. Shiers, R. T. Dinani, J. Thorne, R. Virot, J. Voigt, A. Weis, E. Wursten, G. Wyszyński, J. Zejma, J. Zenner, G. Zsigmond +83 moresemanticscholar +1 more sourceNeutron–Mirror-Neutron Oscillation and Neutron Star Cooling
Physical Review Letters, 2022 It was pointed out in a recent paper that the observed cooling rate of old, cold neutron stars (NS) can provide an upper limit on the transition rate of neutron to mirror neutron ($n-n'$). This limit is so stringent that it would preclude any discovery of $n \to n'$ oscillation in the current round of terrestrial searches for the process.Itzhak Goldman, Rabindra N. Mohapatra, Shmuel Nussinov, Yongchao Zhang +3 moreopenaire +3 more sourcesPSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter [PDF]
Astrophysical Journal, 2019 Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists because their attributes can be used to determine the properties of the dense matter in their cores.M. Miller, F. Lamb, A. Dittmann, S. Bogdanov, Z. Arzoumanian, K. Gendreau, S. Guillot, A. Harding, W. Ho, W. Ho, J. Lattimer, R. Ludlam, S. Mahmoodifar, S. Mahmoodifar, S. Morsink, P. Ray, T. Strohmayer, K. Wood, T. Enoto, R. Foster, T. Okajima, G. Prigozhin, Y. Soong +22 moresemanticscholar +1 more sourceAb initio predictions link the neutron skin of 208Pb to nuclear forces [PDF]
Nature Physics, 2021 Heavy atomic nuclei have an excess of neutrons over protons, which leads to the formation of a neutron skin whose thickness is sensitive to details of the nuclear force.Baishan Hu, Weiguang Jiang, T. Miyagi, Zhonghao Sun, A. Ekstrom, C. Forss'en, G. Hagen, J. Holt, Thomas Papenbrock, Steven Ragnar Stroberg, I. Vernon +10 moresemanticscholar +1 more source