Results 211 to 220 of about 925,982 (358)

Studies on the Rachitis of Newborns.(Part 6)

open access: bronze, 1940
Akio Takahara   +2 more
openalex   +2 more sources

PCSK9 Loss‐of‐Function Disrupts Cellular Microfilament Network via LIN28A/HES5/JMY Axis in Neural Tube Defects

open access: yesAdvanced Science, EarlyView.
PCSK9 acts as a molecular chaperone promoting LIN28A lysosomal degradation. LIN28A elevates transcription factor HES5, increasing JMY expression. PCSK9 loss causes neural tube defects (NTDs) by disrupting the LIN28A/HES5/JMY axis, and high JMY disorganizes the neural progenitor cell microfilament network, leading to incomplete neural tube structure in ...
Xiaoshuai Li   +6 more
wiley   +1 more source

Multiscale Organization of Neural Networks in a 3D Bioprinted Matrix

open access: yesAdvanced Science, EarlyView.
A 3D bioprint model of primary neurons has been engineered with a millimeter‐scale functional neural network, and it recapitulates in vivo transcriptomic features under both normal and disease conditions to the greatest extent. The successful integration of mature neurons and 3D bioprinting signifies a major advance in neuroscience modeling ...
Huiyu Yang   +16 more
wiley   +1 more source

Born Too Soon: learning from the past to accelerate action in the next decade. [PDF]

open access: yesReprod Health
Gruending A   +16 more
europepmc   +1 more source

ER‐phagy Activation by AMFR Attenuates Cardiac Fibrosis Post‐Myocardial Infarction via mTORC1 Pathway

open access: yesAdvanced Science, EarlyView.
By catalyzing FAM134B ubiquitination and activating ER‐phagy, AMFR alleviates progressive fibrosis and cardiac dysfunction by inhibiting the mTORC1 pathway. Consequently, these findings underscore the essential role of AMFR‐driven ER‐phagy in mitigating the progression of fibrotic responses, offering a potential therapeutic target for preventing heart ...
Zhixiang Wang   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy