Results 291 to 300 of about 271,410 (338)

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Engineering a Single Amino Acid Bionanozyme for Ultrasensitive Detection of Biomarkers: A WHO‐REASSURE‐ Aligned Approach

open access: yesAdvanced Functional Materials, EarlyView.
A unique 2D bionanozyme, engineered from a single amino acid and copper ions, demonstrates peroxidase‐mimicking catalytic activity. This efficient and simple bionanozyme allows for ultrasensitive, equipment‐free visual detection of key biomarkers in both test and real samples, meeting the WHO‐REASSURE standards for practical diagnostic applications ...
Subrat Vishwakarma   +5 more
wiley   +1 more source

Potassium nitrate (kno₃) seed priming enhances soybean seed performance. [PDF]

open access: yesSci Rep
Da Rocha LG   +4 more
europepmc   +1 more source

Hydrogen Production by Solar Photoreforming of Urban Wastewaters in Thin‐Layer Flat Catalytic Panels

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates effective hydrogen production and organic pollutant removal from real urban wastewater using solar photoreforming with a Pt/TiO2 photocatalyst. Tested at lab scale and a pre‐pilot flat catalytic panel reactor under natural sunlight, the process showed sustained activity, pollutant degradation, and hydrogen evolution over nearly ...
Laura C. Valencia‐Valero   +5 more
wiley   +1 more source

MnI‐Functionalized Covalent Organic Framework as Efficient Electrocatalyst for CO2 Reduction in a Catholyte‐Free Zero‐Gap Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy