Results 151 to 160 of about 2,700,521 (330)
Fluorescent nanodiamonds (fNDs) have emerged as an invaluable quantum sensing platform for biological and biochemical systems. This paper investigates the influence of common surface functionalization strategies for bioconjugation on the quantum properties of nitrogen vacancy (NV) centers in nanodiamonds.
Anja Sadžak +6 more
wiley +1 more source
Using the Photostationary State of Arylazopyrazoles to Control Phase Transitions of Liquid Crystals
A series of new arylazopyrazole photoswitches is designed as dopants for liquid crystalline materials. Unprecedented, the distribution of photoisomers at the photostationary state upon irradiation with light of specific wavelengths (365, 460, 520 nm) is used to control the liquid crystalline phase transitions under isothermal conditions, including ...
Tobias Thiele +3 more
wiley +1 more source
SI‐bioATRP in Mesoporous Silica for Size‐Exclusion Driven Local Polymer Placement
An enzyme‐catalyzed surface‐initiated atom transfer radical polymerization (SI‐bioATRP) of an anionic monomer within mesoporous silica particles, using hemoglobin as a catalyst, allows for controlling the location of the formed polymer via size‐exclusion effects between the nanopores and the biomacromolecules, thereby opening routes to functional ...
Oleksandr Wondra +8 more
wiley +1 more source
A modular biosynthetic PVA–gelatin hydrogel crosslinked via visible‐light thiol‐ene chemistry is engineered as a coating for neural electrodes. Optimizing matrix composition and mechanical properties enables the hydrogel to support astrocytic populations that guide neural differentiation and functional maturation.
Martina Genta +4 more
wiley +1 more source
In this study, the preparation techniques for silver‐based gas diffusion electrodes used for the electrochemical reduction of carbon dioxide (eCO2R) are systematically reviewed and compared with respect to their scalability. In addition, physics‐based and data‐driven modeling approaches are discussed, and a perspective is given on how modeling can aid ...
Simon Emken +6 more
wiley +1 more source
Polyferrocene block copolymers are synthesized and assembled into micron‐sized polymer cubosomes with double diamond lattice and pore diameter of ≈30 nm. The ferrocene functionality is retained within the polymer cubosome wall as demonstrated on supramolecular modification, and oxidative disassembly.
Chin Ken Wong +4 more
wiley +1 more source
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun +8 more
wiley +1 more source
Liquid crystalline inverted lipid phases and reverse micelles are self‐assembled lipid nanostructures that enhance the solubility, stability, and delivery of diverse therapeutics. This review integrates their physicochemical principles, formulation strategies, drug loading mechanisms, and biomedical applications, highlighting their growing ...
Numan Eczacioglu +3 more
wiley +1 more source
Role of Histidine‐Containing Peptoids in Accelerating the Kinetics of Calcite Growth
Amphiphilic histidine‐containing peptoids mimic carbonic anhydrase (CA) to accelerate calcite step growth. In the presence of Zn2+, they promote the deprotonation of HCO3−, the desolvation of Ca2+, and the reorganization of interfacial hydration layers, thereby reducing the activation barrier for calcite growth.
Mingyi Zhang +5 more
wiley +1 more source
A strategic spin‐polarization suppression in Fe single‐atom catalysts is proposed to enhance electrocatalytic reduction of NO to NH3. Employing a top‐down electrospinning strategy, self‐supported FeSAC with Fe‐N3S1 coordination structure and spin‐state transition is engineered from high‐spin to low‐spin.
Jialing Song +13 more
wiley +1 more source

