Results 71 to 80 of about 28,060 (225)
Periodic points of rational functions over finite fields
Abstract For q$q$ a prime power and ϕ$\phi$ a rational function with coefficients in Fq$\mathbb {F}_q$, let p(q,ϕ)$p(q,\phi)$ be the proportion of P1Fq$\mathbb {P}^1\left(\mathbb {F}_q\right)$ that is periodic with respect to ϕ$\phi$. Furthermore, if d$d$ is a positive integer, let Qd$Q_d$ be the set of prime powers coprime to d!$d!$ and let P(d,q ...
Derek Garton
wiley +1 more source
The stable category of Gorenstein flat sheaves on a noetherian scheme
For a semi-separated noetherian scheme, we show that the category of cotorsion Gorenstein flat quasi-coherent sheaves is Frobenius and a natural non-affine analogue of the category of Gorenstein projective modules over a noetherian ring.
Christensen, Lars Winther +2 more
core
Classifying thick subcategories over a Koszul complex via the curved BGG correspondence
Abstract In this work, we classify the thick subcategories of the bounded derived category of dg modules over a Koszul complex on any list of elements in a regular ring. This simultaneously recovers a theorem of Stevenson when the list of elements is a regular sequence and the classification of thick subcategories for an exterior algebra over a field ...
Jian Liu, Josh Pollitz
wiley +1 more source
Weakly special threefolds and nondensity of rational points
Abstract We verify part of a conjecture of Campana predicting that rational points on the weakly special nonspecial simply connected smooth projective threefolds constructed by Bogomolov–Tschinkel are not dense. To prove our result, we establish fundamental properties of moduli spaces of orbifold maps, and prove a dimension bound for such moduli spaces
Finn Bartsch +2 more
wiley +1 more source
Residually nilpotent groups of homological dimension 1
Abstract If p$p$ is a prime number, then any free group is residually a finite p$p$‐group and has homological dimension 1. As a partial converse of this assertion, in this paper we show that any finitely generated group of homological dimension 1, which is residually a finite p$p$‐group, is free.
Ioannis Emmanouil
wiley +1 more source
Noetherian rings of composite generalized power series
Let A⊆BA\subseteq B be an extension of commutative rings with identity, (S,≤)\left(S,\le ) a nonzero strictly ordered monoid, and S*=S\{0}{S}^{* }\left=S\backslash \left\{0\right\}.
Oh Dong Yeol
doaj +1 more source
The relative Hodge–Tate spectral sequence for rigid analytic spaces
Abstract We construct a relative Hodge–Tate spectral sequence for any smooth proper morphism of rigid analytic spaces over a perfectoid field extension of Qp$\mathbb {Q}_p$. To this end, we generalise Scholze's strategy in the absolute case by using smoothoid adic spaces.
Ben Heuer
wiley +1 more source
Rings Graded By a Generalized Group
The aim of this paper is to consider the ringswhich can be graded by completely simple semigroups.We show that each G-graded ring has an orthonormal basis, where G is a completely simple semigroup. Weprove that if I is a complete homogeneous ideal of a G-
Fatehi Farzad, Molaei Mohammad Reza
doaj +1 more source
Twists of twisted generalized Weyl algebras
Abstract We study graded twisted tensor products and graded twists of twisted generalized Weyl algebras (TGWAs). We show that the class of TGWAs is closed under these operations assuming mild hypotheses. We generalize a result on cocycle equivalence among multiparameter quantized Weyl algebras to the setting of TGWAs.
Jason Gaddis, Daniele Rosso
wiley +1 more source
Noetherian property of inductive limits of noetherian local rings
This note is concerned with verifying the following result. Let \(\{(A_ i,m_ i)\mid i\) is an element of \(I\)\} be a filtered inductive system of noetherian local rings such that \(m_ iA_ j=m_ j\) for \(j\geq i\). Then the inductive limit \(A\) of the system is noetherian.
openaire +3 more sources

