Results 201 to 210 of about 21,877 (248)
Algebraic Structure of Linear Dynamical Systems. III. Realization Theory Over a Commutative Ring. [PDF]
Rouchaleau Y, Wyman BF, Kalman RE.
europepmc +1 more source
Sets of lengths in maximal orders in central simple algebras.
Smertnig D.
europepmc +1 more source
COHOMOLOGY THEORY OF VARIETIES OVER RINGS. [PDF]
Chow WL, Igusa J.
europepmc +1 more source
Primary decomposition of the ideal of polynomials whose fixed divisor is divisible by a prime power.
Peruginelli G.
europepmc +1 more source
Products of two atoms in Krull monoids and arithmetical characterizations of class groups.
Baginski P +3 more
europepmc +1 more source
Some Hyperoperational Aspects of Hypergraphs and Ring Theoretic Vertex Noetherian Path
Khanindra Chandra Chowdhury +1 more
openalex +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Ukrainian Mathematical Journal, 1989
See the review in Zbl 0661.16009.
Kirichenko, V. V., Yaremenko, Yu. V.
openaire +2 more sources
See the review in Zbl 0661.16009.
Kirichenko, V. V., Yaremenko, Yu. V.
openaire +2 more sources
Archiv der Mathematik, 1991
\textit{S. Singh} [Arch. Math. 39, 306-311 (1982; Zbl 0502.16012)] considered rings \(R\) with the property: (P) every finitely generated right \(R\)-module is a direct sum of a projective module with zero socle and uniserial Artinian modules. He proved that a right FBN-ring satisfying (P) is a direct sum of an Artinian serial ring and right hereditary
Dinh Van Huynh, Phan Dan
openaire +2 more sources
\textit{S. Singh} [Arch. Math. 39, 306-311 (1982; Zbl 0502.16012)] considered rings \(R\) with the property: (P) every finitely generated right \(R\)-module is a direct sum of a projective module with zero socle and uniserial Artinian modules. He proved that a right FBN-ring satisfying (P) is a direct sum of an Artinian serial ring and right hereditary
Dinh Van Huynh, Phan Dan
openaire +2 more sources
ANNALI DELL UNIVERSITA DI FERRARA, 1976
Noi introduciamo degli invarianti numerici per misurare in diverse maniere quanto manchi ad un anello per essere noetheriano. La classe degli anelli meta-Noetheriani gode di proprieta ragionevoli. Noi studiamo in particolare il loro comportamento per passaggio all'anello di polinomi.
openaire +2 more sources
Noi introduciamo degli invarianti numerici per misurare in diverse maniere quanto manchi ad un anello per essere noetheriano. La classe degli anelli meta-Noetheriani gode di proprieta ragionevoli. Noi studiamo in particolare il loro comportamento per passaggio all'anello di polinomi.
openaire +2 more sources

