Results 101 to 110 of about 117,966 (253)
A general recipe to observe non‐Abelian gauge field in metamaterials
Abstract Recent research on non‐Abelian phenomena has cast a new perspective on controlling light. In this work, we provide a simple and general approach to induce non‐Abelian gauge field to tremble the light beam trajectory. With in‐plane duality symmetry relaxed, our theoretical analysis finds that non‐Abelian electric field can be synthesized ...
Bingbing Liu, Tao Xu, Zhi Hong Hang
wiley +1 more source
Emergent 4D Gravity from Matrix Models
Recent progress in the understanding of gravity on noncommutative spaces is discussed. A gravity theory naturally emerges from matrix models of noncommutative gauge theory.
Douglas +8 more
core +1 more source
Abstract Given an associative C$\mathbb {C}$‐algebra A$A$, we call A$A$ strongly rigid if for any pair of finite subgroups of its automorphism groups G,H$G, H$, such that AG≅AH$A^G\cong A^H$, then G$G$ and H$H$ must be isomorphic. In this paper, we show that a large class of filtered quantizations are strongly rigid.
Akaki Tikaradze
wiley +1 more source
Noncommutative field gas driven inflation
We investigate early time inflationary scenarios in an Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of bosonic scalar field with noncommutative field space on a commutative ...
Abraham J +13 more
core +1 more source
Linking Bipartiteness and Inversion in Algebra via Graph‐Theoretic Methods and Simulink
Research for decades has concentrated on graphs of algebraic structures, which integrate algebra and combinatorics in an innovative way. The goal of this study is to characterize specific aspects of bipartite and inverse graphs that are associated with specific algebraic structures, such as weak inverse property quasigroups and their isotopes ...
Mohammad Mazyad Hazzazi +6 more
wiley +1 more source
Quantum Extensions of Widder’s Formula via q‐Deformed Calculus
In this study, we rigorously established q‐Widder’s formula of first and second kind by employing the q‐integral within a quantum calculus framework. Our approach introduces a novel formulation of the inverse q‐Laplace transform, enabling simplified computation without relying on conventional complex integration methods.
S. S. Naina Mohammed +6 more
wiley +1 more source
Nonassociative algebra presents multiple options for comprehending and dealing with difficulties in graph theory, artificial intelligence, and cryptography. Its distinctive traits introduce genuine concepts and procedures not found in conventional associative algebra, yielding to new results from studies and breakthroughs in multiple disciplines ...
Mohammad Mazyad Hazzazi +5 more
wiley +1 more source
Finite quantum field theory in noncommutative geometry [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Grosse, H. +2 more
openaire +2 more sources
The soliton solutions and their linear stability in the q‐deformed tanh‐Gordon model are studied in this study using the framework of quantum calculus. This formulation is more practical for the numerical simulation of physical systems with broken symmetries and is generalized to (3 + 1)‐dimensional q‐deformed.
Asghar Ali +3 more
wiley +1 more source
Noncommutative Geometry: Fuzzy Spaces, the Groenewold-Moyal Plane
In this talk, we review the basics concepts of fuzzy physics and quantum field theory on the Groenewold-Moyal Plane as examples of noncommutative spaces in physics. We introduce the basic ideas, and discuss some important results in these fields.
Aiyalam P. Balachandran +1 more
doaj

