Results 261 to 270 of about 25,187,934 (365)

Chiral Nanohoops as an Efficient Spin Polarization System

open access: yesAdvanced Functional Materials, EarlyView.
Chiral conjugated nanohoops with a central dibenzopentalene unit exhibit 90% spin polarization at low voltage and high conductivity. These properties make them ideal components in molecular spintronics applications. Abstract A central challenge in molecular spintronics is to achieve a high spin polarization at low operating voltages and ambient ...
Anu Gupta   +4 more
wiley   +1 more source

Cold Quad‐Modal Nanocomplex for Precise and Quantitative In Vivo Stem Cell Tracking

open access: yesAdvanced Functional Materials, EarlyView.
Multimodal albumin–bismuth sulfide–superparamagnetic iron oxide (ABS) nanocomplexes are developed for stem cell tracking across four different imaging modalities: MRI, MPI, MSOT, and CT. Combining its flexibility with high sensitivity, this quad‐modal imaging agent enables a robust quantification of ABS‐labeled stem cells in vivo.
Ali Shakeri‐Zadeh   +4 more
wiley   +1 more source

Encoding Magnetic Anisotropies in Digital Light Processing 3D Printing

open access: yesAdvanced Functional Materials, EarlyView.
A hybrid magnetic device—combining a coaxial coil within a nested Halbach array—is presented, integrated into a DLP 3D printer to enable spatially resolved magnetic field control. This system enables complex, multimodal responses by programming liquid crystal elastomer resins for magnetic and thermal actuation, and by inducing electrically conductive ...
Eléonore Aïdonidis   +11 more
wiley   +1 more source

Enhancing Synaptic Plasticity and Multistate Retention of Organic Neuromorphic Devices Using Anion‐Excessive Gel Electrolyte

open access: yesAdvanced Functional Materials, EarlyView.
Anion‐excessive gel‐based organic synaptic transistors (AEG‐OSTs) that can maintain electrical neutrality are developed to enhance synaptic plasticity and multistate retention. Key improvement is attributed to the maintenance of electrical neutrality in the electrolyte even after electrochemical doping, which reduces the Coulombic force acting on ...
Yousang Won   +3 more
wiley   +1 more source

Designing Asymmetric Memristive Behavior in Proton Mixed Conductors for Neuromorphic Applications

open access: yesAdvanced Functional Materials, EarlyView.
Protonic devices that couple ionic and electronic transport are demonstrated as bioinspired neuromorphic elements. The devices exhibit rubber‐like asymmetric memristive behavior with slow voltage‐driven conductance increase and rapid relaxation, enabling simplified read–write operation.
Nada H. A. Besisa   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy