Results 301 to 310 of about 5,621,576 (372)

Image 3_Metabolic readouts of tumor instructed normal tissues (TINT) identify aggressive prostate cancer subgroups for tailored therapy.tif

open access: green
Ilona Dudka (8857529)   +4 more
openalex   +1 more source

Preferential normal fuzzy subgroups

Information Sciences, 2010
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Makamba, B. B., Murali, V.
openaire   +1 more source

Closed Normal Subgroups

MLQ, 2001
The paper gives a new, shorter proof of an important theorem of Richard Kaye: closed normal subgroups of the automorphism group of a countable recursively saturated model of Peano Arithmetic are exactly the pointwise stabilizers of invariant initial segments which are closed under exponentiation [\textit{R.
openaire   +2 more sources

Normal subgroup generated by a plane polynomial automorphism

, 2009
We study the normal subgroup 〈f〉N generated by an element f ≠ id in the group G of complex plane polynomial automorphisms having Jacobian determinant 1. On the one hand, if f has length at most 8 relative to the classical amalgamated product structure of
Jean-Philippe Furter, St'ephane Lamy
semanticscholar   +1 more source

Computing crossed modules induced by an inclusion of a normal subgroup, with applications to homotopy 2-types

Theory and Applications of Categories, 1996
We obtain some explicit calculations of crossed Q-modules induced from a crossed module over a normal subgroup P of Q. By virtue of theorems of Brown and Higgins, this enables the computation of the homotopy 2-types and second homotopy modules of certain
Ronald Brown, C. Wensley, L. Breen
semanticscholar   +1 more source

On nilpotent subgroups containing non-trivial normal subgroups

Journal of Group Theory, 2010
Let \(G\) be a non-trivial finite group and let \(A\) be a nilpotent subgroup of \(G\). The author proves that if \(|G:A|\leq\exp(A)\), the exponent of \(A\), then \(A\) contains a non-trivial normal subgroup of \(G\). This extends an earlier result by \textit{I. M. Isaacs} [Proc. Am. Math. Soc. 130, No. 7, 1923-1925 (2002; Zbl 0993.20001)], who proved
Jamali, A. R., Viseh, M.
openaire   +2 more sources

Normality for elementary subgroup functors

Mathematical Proceedings of the Cambridge Philosophical Society, 1995
AbstractWe define a notion of group functor G on categories of graded modules, which unifies previous concepts of a group functor G possessing a notion of elementary subfunctor E. We show under a general condition which is easily checked in practice that the elementary subgroup E(M) of G(M) is normal for all quasi-weak Noetherian objects M in the ...
Bak, Anthony, Vavilov, N.
openaire   +1 more source

Home - About - Disclaimer - Privacy