Results 71 to 80 of about 124,016 (297)

Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey   +5 more
wiley   +1 more source

Optical Phonon Limited High Field Transport in Layered Materials

open access: yes, 2015
An optical phonon limited velocity model has been employed to investigate high-field transport in a selection of layered 2D materials for both, low-power logic switches with scaled supply voltages, and high-power, high-frequency transistors.
Bhat, Navakanta   +4 more
core   +1 more source

Biomimetic microelectronics for regenerative neuronal cuff implants [PDF]

open access: yes, 2015
Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced.
Baunack, Stefan   +9 more
core   +1 more source

Unprecedented Spin‐Lifetime of Itinerant Electrons in Natural Graphite Crystals

open access: yesAdvanced Functional Materials, EarlyView.
Graphite exhibits extraordinary spintronic potential, with electron spin lifetimes reaching 1,000 ns at room temperature ‐ over 100 times longer than graphene‐based devices. Magnetic resonance spectroscopy reveals strong anisotropy: out‐of‐plane spins live 50 times longer than their in‐plane counterparts.
Bence G. Márkus   +5 more
wiley   +1 more source

Bio-inspired spatially variant photonic crystals for self-collimation and beam-steering applications in the near-infrared spectrum

open access: yesScientific Reports, 2021
The self-collimation of light through Photonic Crystals (PCs) due to their optical properties and through a special geometric structure offers a new form of beam steering with highly optical control capabilities for a range of different applications. The
Rudra Gnawali   +5 more
doaj   +1 more source

Spatially Resolved Click Patterning of Dyes on Graphene for 2D Hybrids with Regiotunable Fluorescence

open access: yesAdvanced Functional Materials, EarlyView.
Well‐structured graphene hybrid architectures featuring spatially resolved fluorescent properties represent a promising but so‐far elusive synthetic target. A robust and straightforward method for fabricating well‐organized graphene‐dye hybrid nanoassemblies through a combination of reductive patterning and conventional click chemistry is presented ...
Sabrin Al‐Fogra   +12 more
wiley   +1 more source

Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3

open access: yesAdvanced Functional Materials, EarlyView.
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta   +13 more
wiley   +1 more source

Principles and Applications of Two-Dimensional Semiconductor Material Devices for Reconfigurable Electronics

open access: yesNanomaterials
With the advances in edge computing and artificial intelligence, the demands of multifunctional electronics with large area efficiency are increased.
Jiong Pan   +5 more
doaj   +1 more source

All-Optical Switching with Transverse Optical Patterns

open access: yes, 2007
We demonstrate an all-optical switch that operates at ultra-low-light levels and exhibits several features necessary for use in optical switching networks.
Andrew M. C. Dawes   +6 more
core   +2 more sources

Electroactive Liquid Crystal Elastomers as Soft Actuators

open access: yesAdvanced Functional Materials, EarlyView.
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley   +1 more source

Home - About - Disclaimer - Privacy