Results 71 to 80 of about 124,016 (297)
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Optical Phonon Limited High Field Transport in Layered Materials
An optical phonon limited velocity model has been employed to investigate high-field transport in a selection of layered 2D materials for both, low-power logic switches with scaled supply voltages, and high-power, high-frequency transistors.
Bhat, Navakanta +4 more
core +1 more source
Biomimetic microelectronics for regenerative neuronal cuff implants [PDF]
Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced.
Baunack, Stefan +9 more
core +1 more source
Unprecedented Spin‐Lifetime of Itinerant Electrons in Natural Graphite Crystals
Graphite exhibits extraordinary spintronic potential, with electron spin lifetimes reaching 1,000 ns at room temperature ‐ over 100 times longer than graphene‐based devices. Magnetic resonance spectroscopy reveals strong anisotropy: out‐of‐plane spins live 50 times longer than their in‐plane counterparts.
Bence G. Márkus +5 more
wiley +1 more source
The self-collimation of light through Photonic Crystals (PCs) due to their optical properties and through a special geometric structure offers a new form of beam steering with highly optical control capabilities for a range of different applications. The
Rudra Gnawali +5 more
doaj +1 more source
Well‐structured graphene hybrid architectures featuring spatially resolved fluorescent properties represent a promising but so‐far elusive synthetic target. A robust and straightforward method for fabricating well‐organized graphene‐dye hybrid nanoassemblies through a combination of reductive patterning and conventional click chemistry is presented ...
Sabrin Al‐Fogra +12 more
wiley +1 more source
Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta +13 more
wiley +1 more source
With the advances in edge computing and artificial intelligence, the demands of multifunctional electronics with large area efficiency are increased.
Jiong Pan +5 more
doaj +1 more source
All-Optical Switching with Transverse Optical Patterns
We demonstrate an all-optical switch that operates at ultra-low-light levels and exhibits several features necessary for use in optical switching networks.
Andrew M. C. Dawes +6 more
core +2 more sources
Electroactive Liquid Crystal Elastomers as Soft Actuators
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley +1 more source

