Results 31 to 40 of about 4,373 (230)
Uniform estimates with data from generalized Lebesgue spaces in periodic structures
We study various types of uniform Calderón–Zygmund estimates for weak solutions to elliptic equations in periodic homogenization. A global regularity is obtained with respect to the nonhomogeneous term from weighted Lebesgue spaces, Orlicz spaces, and ...
Yunsoo Jang
doaj +1 more source
Interpolation inequalities in generalized Orlicz-Sobolev spaces and applications
Let m∈Nm\in {\mathbb{N}} and be a generalized Orlicz function. We obtained some interpolation inequalities for derivatives in generalized Orlicz-Sobolev spaces Wm,φ(Rn){W}^{m,\varphi }\left({{\mathbb{R}}}^{n}).
Wu Ruimin, Wang Songbai
doaj +1 more source
As is well known, the extreme points and strongly extreme points play important roles in Banach spaces. In this paper, the criterion for strongly extreme points in Orlicz spaces equipped with s-norm is given.
Yunan Cui, Yujia Zhan
doaj +1 more source
Multipliers on noncommutative Orlicz spaces [PDF]
14 ...
openaire +4 more sources
Triple Solutions for Nonlinear (μ1(·), μ2(·))—Laplacian–Schrödinger–Kirchhoff Type Equations
In this manuscript, we study a (μ1(·), μ2(·))—Laplacian–Schrödinger–Kirchhoff equation involving a continuous positive potential that satisfies del Pino–Felmer type conditions: K1∫ℝN11/μ1z∇ψμ1z dz+∫ℝN/μ1zVzψμ1z dz−Δμ1·ψ+Vzψμ1z−2ψ+K2∫ℝN11/μ2z∇ψμ2z dz+∫ℝN/μ2zVzψμ2z dz−Δμ2·ψ+Vzψμ2z−2ψ=ξ1θ1z,ψ+ξ2θ2z,ψ inℝN, where K1 and K2 are Kirchhoff functions, Vz is a ...
Ahmed AHMED +3 more
wiley +1 more source
Matrix Freedman Inequality for Sub‐Weibull Martingales
ABSTRACT In this paper, we establish a matrix Freedman inequality for martingales with sub‐Weibull tails. Under conditional ψα$$ {\psi}_{\alpha } $$ control of the increments, the top eigenvalue admits a non‐asymptotic tail bound with explicit, dimension‐aware constants.
Íñigo Torres
wiley +1 more source
We define the weighted Orlicz-Lorentz-Morrey and weak weighted Orlicz-Lorentz-Morrey spaces to generalize the Orlicz spaces, the weighted Lorentz spaces, the Orlicz-Lorentz spaces, and the Orlicz-Morrey spaces.
Li Hongliang
doaj +1 more source
Extreme Points and Rotundity in Musielak-Orlicz-Bochner Function Spaces Endowed with Orlicz Norm
The criteria for extreme point and rotundity of Musielak-Orlicz-Bochner function spaces equipped with Orlicz norm are given. Although criteria for extreme point of Musielak-Orlicz function spaces equipped with the Orlicz norm were known, we can easily ...
Shaoqiang Shang, Yunan Cui, Yongqiang Fu
doaj +1 more source
Multiplicity results for logarithmic double phase problems via Morse theory
Abstract In this paper, we study elliptic equations of the form −divL(u)=f(x,u)inΩ,u=0on∂Ω,$$\begin{align*} -\operatorname{div}\mathcal {L}(u)=f(x,u)\quad \text{in }\Omega, \quad u=0 \quad \text{on } \partial \Omega, \end{align*}$$where divL$\operatorname{div}\mathcal {L}$ is the logarithmic double phase operator given by div|∇u|p−2∇u+μ(x)|∇u|q(e+|∇u ...
Vicenţiu D. Rădulescu +2 more
wiley +1 more source
Locally Nearly Uniformly Convex Points in Orlicz Spaces Equipped with the Luxemburg Norm
This research explores two novel geometric concepts—nearly convex points and locally nearly uniformly convex points within the frameworks of Banach spaces and Orlicz spaces equipped with the Luxemburg norm.
Yunan Cui, Xiaoxia Wang, Yaoming Niu
doaj +1 more source

