Results 41 to 50 of about 14,081 (237)
AbstractRotund Orlicz spaces and Orlicz spaces that contain isomorphic copies of l∘ and co are characterized in the class of Orlicz spaces over measure spaces that are not purely atomic.
openaire +2 more sources
Matrix Freedman Inequality for Sub‐Weibull Martingales
ABSTRACT In this paper, we establish a matrix Freedman inequality for martingales with sub‐Weibull tails. Under conditional ψα$$ {\psi}_{\alpha } $$ control of the increments, the top eigenvalue admits a non‐asymptotic tail bound with explicit, dimension‐aware constants.
Íñigo Torres
wiley +1 more source
Extreme Points and Rotundity in Musielak-Orlicz-Bochner Function Spaces Endowed with Orlicz Norm
The criteria for extreme point and rotundity of Musielak-Orlicz-Bochner function spaces equipped with Orlicz norm are given. Although criteria for extreme point of Musielak-Orlicz function spaces equipped with the Orlicz norm were known, we can easily ...
Shaoqiang Shang, Yunan Cui, Yongqiang Fu
doaj +1 more source
Weak Orlicz-Hardy Martingale Spaces [PDF]
In this paper, several weak Orlicz-Hardy martingale spaces associated with concave functions are introduced, and some weak atomic decomposition theorems for them are established.
Jiao, Yong, Wu, Lian
core
Multipliers on noncommutative Orlicz spaces [PDF]
14 ...
openaire +4 more sources
On the dual of Orlicz–Lorentz space [PDF]
A description of the Köthe dual of the Orlicz–Lorentz space Λ φ , w \Lambda _{\varphi , w} generated by an Orlicz function φ \varphi and a regular weight function w w is presented.
Hudzik, H., Kaminska, A., Mastylo, M.
openaire +1 more source
Superlinear perturbations of a double‐phase eigenvalue problem
Abstract We consider a perturbed version of an eigenvalue problem for the double‐phase operator. The perturbation is superlinear, but need not satisfy the Ambrosetti–Robinowitz condition. Working on the Sobolev–Orlicz space W01,η(Ω)$ W^{1,\eta }_{0}(\Omega)$ with η(z,t)=α(z)tp+tq$ \eta (z,t)=\alpha (z)t^{p}+t^{q}$ for 1
Yunru Bai +2 more
wiley +1 more source
We define the weighted Orlicz-Lorentz-Morrey and weak weighted Orlicz-Lorentz-Morrey spaces to generalize the Orlicz spaces, the weighted Lorentz spaces, the Orlicz-Lorentz spaces, and the Orlicz-Morrey spaces.
Li Hongliang
doaj +1 more source
Normalized solutions of the critical Schrödinger–Bopp–Podolsky system with logarithmic nonlinearity
Abstract In this paper, we study the following critical Schrödinger–Bopp–Podolsky system driven by the p$p$‐Laplace operator and a logarithmic nonlinearity: −Δpu+V(εx)|u|p−2u+κϕu=λ|u|p−2u+ϑ|u|p−2ulog|u|p+|u|p*−2uinR3,−Δϕ+a2Δ2ϕ=4π2u2inR3.$$\begin{equation*} {\begin{cases} -\Delta _p u+\mathcal {V}(\varepsilon x)|u|^{p-2}u+\kappa \phi u=\lambda |u|^{p-2 ...
Sihua Liang +3 more
wiley +1 more source
The domination theorem for operator classes generated by Orlicz spaces
Abstract We study lattice summing operators between Banach spaces focusing on two classes, ℓφ$\ell _\varphi$‐summing and strongly φ$\varphi$‐summing operators, which are generated by Orlicz sequence lattices ℓφ$\ell _\varphi$. For the class of strongly φ$\varphi$‐summing operators, we prove the domination theorem, which complements Pietsch's ...
D. L. Fernandez +3 more
wiley +1 more source

