Results 61 to 70 of about 133,748 (333)

Reconfigurable Three‐Dimensional Superconducting Nanoarchitectures

open access: yesAdvanced Functional Materials, EarlyView.
3D superconducting nanostructures offer new possibilities for emergent physical phenomena. However, fabricating complex geometries remains challenging. Here 3D nanoprinting of complex 3D superconducting nanoarchitectures is established. As well as propagating superconducting vortices in 3D, anisotropic superconducting properties with geometric ...
Elina Zhakina   +11 more
wiley   +1 more source

Orthogonal Genetic Algorithm for Planar Thinned Array Designs

open access: yesInternational Journal of Antennas and Propagation, 2012
An orthogonal genetic algorithm (OGA) is applied to optimize the planar thinned array with a minimum peak sidelobe level. The method is a genetic algorithm based on orthogonal design.
Li Zhang   +3 more
doaj   +1 more source

Locating Arrays with Mixed Alphabet Sizes

open access: yesMathematics, 2020
Locating arrays (LAs) can be used to detect and identify interaction faults among factors in a component-based system. The optimality and constructions of LAs with a single fault have been investigated extensively under the assumption that all the ...
Ce Shi, Hao Jin, Tatsuhiro Tsuchiya
doaj   +1 more source

A novel DOA estimation algorithm using directional antennas in cylindrical conformal arrays

open access: yesDefence Technology, 2021
In this paper, a novel direction of arrival (DOA) estimation algorithm using directional antennas in cylindrical conformal arrays (CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output ...
Xiao-feng Gao   +4 more
doaj   +1 more source

Orthogonal F-rectangles, orthogonal arrays, and codes

open access: yesJournal of Combinatorial Theory, Series A, 1986
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Federer, Walter T, Mandeli, John P
openaire   +1 more source

Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu   +3 more
wiley   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Host‐Directed Biomaterials for Combatting Bloodstream Infections: From Macrocyclic Peptides to Immune‐Activating Cell Backpacks

open access: yesAdvanced Functional Materials, EarlyView.
Bloodstream infections (BSI) are one of the leading causes of mortality and morbidity in both civilian and military populations. This paper summarizes recent progress in novel treatment strategies to manage BSI arising from both bacterial and fungal pathogens using molecules, particles, and materials to elicit host‐directed immunity.
Thomas Thomou   +11 more
wiley   +1 more source

Photoswitching Conduction in Framework Materials

open access: yesAdvanced Functional Materials, EarlyView.
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez   +4 more
wiley   +1 more source

Mechanical Properties of Architected Polymer Lattice Materials: A Comparative Study of Additive Manufacturing and CAD Using FEM and µ‐CT

open access: yesAdvanced Functional Materials, EarlyView.
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy