Results 81 to 90 of about 221,706 (315)

Liquiritin Exerts a Dual Effect on BMSCs Osteogenic Differentiation and Fracture Healing by Activating the ERK/JNK Pathway and Providing Antioxidant Protection

open access: yesAdvanced Therapeutics, EarlyView.
Liquiritin enhances the osteogenic differentiation of BMSCs and promotes fracture healing through the activation of the ERK/JNK signaling pathway and by exerting antioxidant protective effects. Abstract Liquiritin, a flavonoid from Glycyrrhiza uralensis L., has diverse pharmacological properties, but its impact on fracture healing is unexplored.
Haijun Mao   +6 more
wiley   +1 more source

Epigenetic Activation of CCDC183‐AS1 Promotes Osteoclastogenesis and Prostate Cancer Bone Metastasis Through the FUBP1/LIGHT Axis

open access: yesAdvanced Science, EarlyView.
CCDC183‐AS1 overexpression enhanced the ability of PCa cells to spread to the bone by inducing osteoclastogenesis. Mechanistically, CCDC183‐AS1 interacted with FUBP1 and enhanced its stability, which promoted the transcription of TNFSF14 (LIGHT). Copy number gain‐induced KDM5C epigenetically upregulated CCDC183‐AS1 expression by recruiting TET1 to the ...
Chuandong Lang   +10 more
wiley   +1 more source

Structure, Mechanics, and Mechanobiology of Fibrocartilage Pericellular Matrix Mediated by Type V Collagen

open access: yesAdvanced Science, EarlyView.
This study defines the structure, mechanics, and mechanobiology of the fibrocartilage pericellular matrix (PCM) using the murine meniscus, showing how collagen V deficiency alters PCM properties and disrupts cell mechanosensitive signaling. Findings emphasize the critical role of PCM in fibrocartilage mechanobiology and suggest targeting it can enhance
Chao Wang   +13 more
wiley   +1 more source

Early efficacy observation of the unilateral biportal endoscopic technique in the treatment of multi-level lumbar spinal stenosis

open access: yesJournal of Orthopaedic Surgery and Research
Background To explore the early curative effect of unilateral biportal endoscopy (UBE) in the treatment of multi-level lumbar spinal stenosis with the help of multiple small incisions.
Dingding Jia   +6 more
doaj   +1 more source

PSMD14 Stabilizes SLC7A11 to Ameliorate Glucocorticoid‐Induced Osteoporosis by Suppressing Osteocyte Ferroptosis

open access: yesAdvanced Science, EarlyView.
Glucocorticoid‐induced osteoporosis (GIOP) triggers osteocyte ferroptosis via SLC7A11 degradation. PSMD14 stabilizes SLC7A11 by counteracting glucocorticoid‐driven ubiquitination, preserving cystine uptake and glutathione synthesis. AAV‐mediated PSMD14 delivery or its agonist Pantethine rescues osteocyte survival and bone loss in GIOP mice.
Yifeng Shi   +20 more
wiley   +1 more source

Reverse Posterior Interosseous Artery Flap for Human Bite Injury to the Hand

open access: yesCase Reports in Orthopedics
Bite injuries frequently occur on human hands. Human bite injuries to the hand may lead to an infection because of limited soft tissue protection and wound contamination.
Yusuke Hattori   +5 more
doaj   +1 more source

Microsphere Strategy to Generate Conformal Bone Organoid Units with Osteoimmunomodulation and Sustainable Oxygen Supply for Bone Regeneration

open access: yesAdvanced Science, EarlyView.
Oxygen‐releasing immunomodulatory microspheres are used to construct conformal bone organoid units that enhance osteogenesis, angiogenesis, and immune regulation. By integrating BMSCs, macrophages, and CaO₂‐HAp into a SilMA‐based hydrogel platform, this strategy provides sustained oxygen supply and anti‐inflammatory microenvironments, leading to ...
Anfu Deng   +12 more
wiley   +1 more source

PIEZO1‐GPX4 Axis Mediates Mechanical Stress‐Induced Vertebral Growth Plate Dysplasia via Ferroptosis Activation

open access: yesAdvanced Science, EarlyView.
Mechanical stress activates PIEZO1 in vertebral growth plate chondrocytes, triggering ferroptosis through direct binding and inhibition of GPX4. This axis promotes lipid peroxidation and pathological ossification, accelerating spinal deformities. Clinical and genetic evidence (Piezo1‐cKO) confirms its role in scoliosis progression.
Fei Chen   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy