Results 171 to 180 of about 197,424 (329)

Magnetically Responsive Piezoelectric Nanocapacitors Enhance Neural Recovery Following Spinal Cord Injury via Targeted Spinal Magnetic Stimulation

open access: yesAdvanced Science, EarlyView.
This study presents a novel “in vivo–in vitro” therapeutic strategy for spinal cord injury by leveraging magnetically responsive piezoelectric nanomaterials. These nanomaterials enable targeted delivery of localized electrical stimulation at the injury site through noninvasive external magnetic actuation, thereby promoting axonal regeneration and ...
Zhihang Xiao   +9 more
wiley   +1 more source

Rgnef regulates bone mass through the activation of RhoA and Rac1. [PDF]

open access: yesExp Mol Med
Lee J   +7 more
europepmc   +1 more source

Elevator‐Like Hollow Channels in Porous Scaffolds Accelerate Vascularized Bone Regeneration via NETs‐Fibrin‐Mediated Macrophage Recruitment

open access: yesAdvanced Science, EarlyView.
This study demonstrates that how hollow‐channel scaffolds promote vascularized bone regeneration via an immunomodulatory mechanism. The channel structures facilitate the formation of a neutrophil extracellular traps‐fibrin scaffold that recruits vascular endothelial growth factor A (VEGF‐A)‐secreting M2 macrophages to drive angiogenesis. Combining this
Guifang Wang   +8 more
wiley   +1 more source

Universal Solvent Escape Strategies for Efficient Curing of Hydrogen‐Bond‐Rich 3D Printing Inks

open access: yesAdvanced Science, EarlyView.
This study developed a new 3D printing method for hydrogen‐bonded polymers by combining solvent replacement, nanoparticles, and optimized printing paths. This allows fast, precise scaffold fabrication. The scaffolds can be easily customized and release therapeutic agents slowly through protonation, enabling personalized bone, blood vessel, and nerve ...
Jie Chen   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy