Results 71 to 80 of about 310,988 (207)
Herein, environmental scanning electron microscopy (ESEM) is discussed as a powerful extension of conventional SEM for life sciences. By combining high‐resolution imaging with variable pressure and humidity, ESEM allows the analysis of untreated biological materials, supports in situ monitoring of hydration‐driven changes, and advances the functional ...
Jendrian Riedel +6 more
wiley +1 more source
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart +3 more
wiley +1 more source
This study investigates laser metal deposition of aluminum alloys EN AW‐7075 and EN AW‐5083, using powder blending to compensate zinc and magnesium evaporation. In situ alloying and ex situ alloying with ZnAl12 and AZ91 preserve near‐standard compositions and improve mechanical properties.
Finn Bendixen +3 more
wiley +1 more source
Rheocasting versus Die Casting: An Insight into the Low‐Cycle Fatigue Behavior of AlSi7Mg0.6
The study compares rheocast lightweight components with high‐pressure die cast materials regarding microstructure and fatigue behavior. Rheocast process offers higher efficiency due to lower casting temperatures. Despite some microstructural differences, both processes show similar strengths (yield strength 125 MPa, tensile strength 240 MPa).
Julia Richter +4 more
wiley +1 more source
Can Ti‐Based MXenes Serve as Solid Lubricants for Brake Applications? A Tribological Study
This study explores the first implementation of Ti‐based MXenes materials in brake pad friction composite material. The resulting composite material exhibits a 48% reduction in the wear rate; alongside significant improvements are observed for thermal and mechanical properties.
Eslam Mahmoud +7 more
wiley +1 more source
The results demonstrate a simulation‐driven workflow that applies LSB topology optimization with additive manufacturing constraints to mission‐specific load cases, integrating European Cooperation for Space Standardization compliant verification and manufacturability to develop structurally efficient rover suspension components.
Stelios K. Georgantzinos +11 more
wiley +1 more source
High‐temperature interactions between low‐sulfur Al‐killed Mn–B steel and MgO–C refractories (0 and 50 wt% recyclates) are studied via finger immersion tests (1600 °C). Surface‐active elements influence infiltration. MgO/CaS layer forms, along with spinel and calcium silicate.
Matheus Roberto Bellé +5 more
wiley +1 more source
Transfer of Energy and Momentum Between Magnetoactive Surface Microstructure and a Solid Object
We demonstrate that magnetoactive multilamellar arrays subjected to a rotating magnetic field can function as platforms for controlled transport of physical objects. Through systematic experimental investigation, we elucidate the underlying physical mechanisms determining the upper limit of the achievable transportation speed in such magnetic “conveyor‐
Arne Geldof +9 more
wiley +1 more source
Bimetallic (NiFe) and trimetallic (NiFeCr) nanoalloys (NAs) are synthesized using corresponding oxide mixtures using microwave hydrogen plasma within a few milliseconds. The process simultaneously 1) reduces metal oxides to metals; 2) downsizes the particles from micrometers to nanometers; and 3) blends the metals to form NAs.
Sachin Kumar +5 more
wiley +1 more source
The thermal diffusivity of MgO‐C refractories is highly sensitive to sample preparation and processing procedures. In this article, the effects of coking sequence, machining conditions, structural inhomogeneity, and graphite coating application on measurements using laser flash apparatus are systematically investigated.
Luyao Pan +4 more
wiley +1 more source

