Results 41 to 50 of about 119,166 (199)
On the Planarity of Generalized Line Graphs
One of the most familiar derived graphs is the line graph. The line graph $L(G)$ of a graph $G$ is that graph whose vertices are the edges of $G$ where two vertices of $L(G)$ are adjacent if the corresponding edges are adjacent in~$G$.
Khawlah H. Alhulwah+2 more
doaj +1 more source
On Supergraphs Satisfying CMSO Properties [PDF]
Let CMSO denote the counting monadic second order logic of graphs. We give a constructive proof that for some computable function $f$, there is an algorithm $\mathfrak{A}$ that takes as input a CMSO sentence $\varphi$, a positive integer $t$, and a ...
Mateus de Oliveira Oliveira
doaj +1 more source
Nonplanarity of Iterated Line Graphs
The 1‐crossing index of a graph G is the smallest integer k such that the kth iterated line graph of G has crossing number greater than 1. In this paper, we show that the 1‐crossing index of a graph is either infinite or it is at most 5. Moreover, we give a full characterization of all graphs with respect to their 1‐crossing index.
Jing Wang, Alfred Peris
wiley +1 more source
Packing colorings of subcubic outerplanar graphs [PDF]
Given a graph $G$ and a nondecreasing sequence $S=(s_1,\ldots,s_k)$ of positive integers, the mapping $c:V(G)\longrightarrow \{1,\ldots,k\}$ is called an $S$-packing coloring of $G$ if for any two distinct vertices $x$ and $y$ in $c^{-1}(i)$, the distance between $x$ and $y$ is greater than $s_i$. The smallest integer $k$ such that there exists a $(1,2,
Nicolas Gastineau+3 more
openaire +5 more sources
On Another Class of Strongly Perfect Graphs
For a commutative ring R with unity, the associate ring graph, denoted by AG(R), is a simple graph with vertices as nonzero elements of R and two distinct vertices are adjacent if they are associates.
Neha Kansal+3 more
doaj +1 more source
Game Chromatic Number of Generalized Petersen Graphs and Jahangir Graphs
Let G = (V, E) be a graph, and two players Alice and Bob alternate turns coloring the vertices of the graph G a proper coloring where no two adjacent vertices are signed with the same color. Alice′s goal is to color the set of vertices using the minimum number of colors, which is called game chromatic number and is denoted by χg(G), while Bob′s goal is
Ramy Shaheen+3 more
wiley +1 more source
The Degree-Diameter Problem for Outerplanar Graphs
For positive integers Δ and D we define nΔ,D to be the largest number of vertices in an outerplanar graph of given maximum degree Δ and diameter D. We prove that nΔ,D=ΔD2+O (ΔD2−1)$n_{\Delta ,D} = \Delta ^{{D \over 2}} + O\left( {\Delta ^{{D \over 2 ...
Dankelmann Peter+2 more
doaj +1 more source
Characterization of outerplanar graphs with equal 2-domination and domination numbers
A {\em $k$-domination number} of a graph $G$ is minimum cardinality of a $k$-dominating set of $G$, where a subset $S \subseteq V(G)$ is a {\em $k$-dominating set} if each vertex $v\in V(G)\setminus S$ is adjacent to at least $k$ vertices in $S$.
Naoki Matsumoto
doaj +1 more source
The maximum common connected edge subgraph problem is to find a connected graph with the maximum number of edges that is isomorphic to a subgraph of each of the two input graphs, where it has applications in pattern recognition and chemistry.
Takeyuki Tamura, Tatsuya Akutsu
doaj +1 more source
Scaling Limits of Random Graphs from Subcritical Classes: Extended abstract [PDF]
We study the uniform random graph $\mathsf{C}_n$ with $n$ vertices drawn from a subcritical class of connected graphs. Our main result is that the rescaled graph $\mathsf{C}_n / \sqrt{n}$ converges to the Brownian Continuum Random Tree $\mathcal{T}_ ...
Konstantinos Panagiotou+2 more
doaj +1 more source