Results 151 to 160 of about 28,953 (166)
Some of the next articles are maybe not open access.

An improvement of Ozaki’s P-valent conditions

Acta Mathematica Sinica, English Series, 2016
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Nunokawa, Mamoru   +3 more
openaire   +2 more sources

?-Areally mean p-valent bounded functions

Siberian Mathematical Journal, 1986
Translation from Sib. Mat. Zh. 26, No.6(154), 9-14 (Russian) (1985; Zbl 0586.30017).
openaire   +1 more source

$$\boldsymbol{(s,p)}$$ -Valent Functions

2017
We introduce the notion of \((\mathcal{F},p)\)-valent functions. We concentrate in our investigation on the case, where \(\mathcal{F}\) is the class of polynomials of degree at most s. These functions, which we call (s, p)-valent functions, provide a natural generalization of p-valent functions (see Hayman, Multivalent Functions, 2nd ed, Cambridge ...
Omer Friedland, Yosef Yomdin
openaire   +1 more source

On certain meromorphic p-valent starlike functions

Journal of the Franklin Institute, 2007
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +2 more sources

Sharp Coefficient Bounds for Certain p-Valent Functions

Bulletin of the Malaysian Mathematical Sciences Society, 2017
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Nak Eun Cho   +3 more
openaire   +2 more sources

INEQUALITIES FOR MEROMORPHICALLY P-VALENT FUNCTIONS

2009
The aim of this paper is to prove some inequalities for p-valent meromorphic functions in thepunctured unit disk Δ* and find important corollaries.
EBADIAN, A., NAJAFZADEH, SH.
openaire   +1 more source

Ahlfors type p-valent conditions for biharmonic functions

Journal of Mathematical Analysis and Applications
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Xiaoyuan Wang   +2 more
openaire   +1 more source

p-valent analytic function with negative coefficients

1989
Let \(f(z)=z^ p-\sum^{\infty}_{n=1}| a_{n+p}| z^{n+p}\) be analytic and p-valent in the unit disc \(E=\{z:\) \(| z|
Murthy, M. R. Krishna, Sarangi, S. M.
openaire   +2 more sources

Distortion theorems for bounded \(p\)-valent functions

1960
Artykuł z: Annales Universitatis Mariae Curiae-Skłodowska. Sectio A, Mathematica. Vol. 12 (1958), s. 19-38, streszcz. pol., ros. ; Artykuł z: Annales Universitatis Mariae Curiae-Skłodowska. Sectio A, Mathematica. Vol. 12 (1958), s. 19-38, streszcz. pol., ros.
openaire   +1 more source

A New Criterion for p-Valent Functions

Proceedings of the American Mathematical Society, 1980
Goel, R. M., Sohi, N. S.
openaire   +1 more source

Home - About - Disclaimer - Privacy