Results 151 to 160 of about 665,193 (301)

Protein O‐glycosylation in the Bacteroidota phylum

open access: yesFEBS Open Bio, EarlyView.
Species of the Bacteroidota phylum exhibit a unique O‐glycosylation system. It modifies noncytoplasmic proteins on a specific amino acid motif with a shared glycan core but a species‐specific outer glycan. A locus of multiple glycosyltransferases responsible for the synthesis of the outer glycan has been identified.
Lonneke Hoffmanns   +2 more
wiley   +1 more source

Identifying prognostic targets in metastatic prostate cancer beyond AR

open access: yesFEBS Open Bio, EarlyView.
Genome‐wide functional screens combined with a large gene expression database and clinical outcomes can identify new therapeutic vulnerabilities in prostate cancer. Eight potentially druggable targets demonstrated strong dependency in cell lines, were associated with worse prognosis clinically, and showed evidence of protein expression in prostate ...
Emily Feng   +13 more
wiley   +1 more source

Current trends in single‐cell RNA sequencing applications in diabetes mellitus

open access: yesFEBS Open Bio, EarlyView.
Single‐cell RNA sequencing is a powerful approach to decipher the cellular and molecular landscape at a single‐cell resolution. The rapid development of this technology has led to a wide range of applications, including the detection of cellular and molecular mechanisms and the identification and introduction of novel potential diagnostic and ...
Seyed Sajjad Zadian   +6 more
wiley   +1 more source

Characterization of WAC interactions with R2TP and TTT chaperone complexes linking glucose and glutamine availability to mTORC1 activity

open access: yesFEBS Open Bio, EarlyView.
TTT and R2TP chaperone complexes are required for the assembly and activation of mTORC1. WAC directly interacts with components of TTT, R2TP, and mTORC1, and these interactions are affected by the availability of glucose and glutamine, correlating with changes in mTORC1 activity.
Sofía Cabezudo   +11 more
wiley   +1 more source

Blocking the voltage‐gated sodium channel hNav1.5 as a novel pH‐dependent mechanism of action for tamoxifen

open access: yesFEBS Open Bio, EarlyView.
Patch‐clamp recordings revealed that tamoxifen inhibits voltage‐gated sodium channels, especially under acidic conditions, both common in metastatic cancer cells. These effects may explain certain antitumor properties of tamoxifen, highlighting a novel mechanism of action beyond its known endocrine effects.
Karl Josef Föhr   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy