Results 271 to 280 of about 59,954 (356)

Degradable Magnetic Composites from Recycled NdFeB Magnets for Soft Actuation and Sensing

open access: yesAdvanced Robotics Research, EarlyView.
This work presents a degradable soft magnetic composite made from recycled NdFeB particles embedded in a gelatin‐based organogel. The material is processed into magnetic sensors and soft robotic components, which can later be dissolved in a green solvent to recover NdFeB magnetic particles.
Muhammad Bilal Khan   +14 more
wiley   +1 more source

Tumbling Magnetic Microrobots for Targeted In Vivo Drug Delivery in the GI Tract

open access: yesAdvanced Robotics Research, EarlyView.
We introduce a microrobot design and integrated system for on‐demand targeted drug release in the gastrointestinal tract. The microrobot has an embedded magnet for actuation with external magnetic fields and is visualized in real time using ultrasound. It has two drug release ports sealed with a thermally sensitive wax. Local heating of the wax using a
Aaron C. Davis   +7 more
wiley   +1 more source

A Self‐Healing Permanent Magnet Putty for Soft Robot Skins With Force Sensing and Functional Recovery

open access: yesAdvanced Robotics Research, EarlyView.
Permanent magnet putty (PMP) integrates high‐coercivity NdFeB particles with a dynamic polyborosiloxane–Ecoflex matrix, achieving rapid self‐healing (90% mechanical recovery in 10 s) and magnetic recovery within 20 min. With twice the sensitivity of commercial putties, PMP enables precise 5–30 N force detection and discrimination between pressing and ...
Ruotong Zhao   +5 more
wiley   +1 more source

Robot metabolism: Toward machines that can grow by consuming other machines. [PDF]

open access: yesSci Adv
Wyder PM   +19 more
europepmc   +1 more source

Compliant Pneumatic Feet with Real‐Time Stiffness Adaptation for Humanoid Locomotion

open access: yesAdvanced Robotics Research, EarlyView.
A compliant pneumatic foot with real‐time variable stiffness enables humanoid robots to adapt to changing terrains. Using onboard vision and pressure control, the foot modulates stiffness within each gait cycle, reducing impact forces and improving balance. The design, cast in soft silicone with embedded air chambers and Kevlar wrapping, offers durable,
Irene Frizza   +3 more
wiley   +1 more source

Origami‐Inspired Structural Design for Aquatic‐Terrestrial Amphibious Robots

open access: yesAdvanced Robotics Research, EarlyView.
This work presents a lightweight amphibious origami robot actuated by a single shape memory alloy wire. A rigid foldable origami structure with displacement amplification enables efficient terrestrial crawling and aquatic swimming. The addition of fan‐shaped units allows controllable turning in both environments.
Weiqi Liu   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy