Results 171 to 180 of about 196,788 (338)

Composites of Shellac and Silver Nanowires as Flexible, Biobased, and Corrosion‐Resistant Transparent Conductive Electrodes

open access: yesAdvanced Functional Materials, EarlyView.
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein   +4 more
wiley   +1 more source

Electrochemically Driven Tandem In‐Plane Reduction and FeCl3‐ Intercalation of Highly Crystalline Graphene Oxide Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a green processing route for high‐performance reduced graphene oxide (rGO) transparent conductive films (TCFs) using highly crystalline Brodie's GO. In‐plane electrochemical reduction forms rGO on insulating substrates without toxic reductants or heat. Subsequent FeCl₃ intercalation enhances conductivity, overcoming the transparency–
Tatsuki Tsugawa   +6 more
wiley   +1 more source

DENTA: A Dual Enzymatic Nanoagent for Self‐Activating Tooth Whitening and Biofilm Disruption

open access: yesAdvanced Functional Materials, EarlyView.
The nanoapatite with dual enzymes (DENTA) accumulates in dentinal tubules, reducing hypersensitivity caused by dental nerve exposure and facilitating continuous ROS generation through salivary glucose for effective, long‐term whitening. The dentin structures remain non‐destructive due to the low concentration of ROS, demonstrating excellent cell ...
Junseok Kim   +13 more
wiley   +1 more source

CRISPR/Cas9‐Assisted Microrobots for Fast and Ultrasensitive “On‐The‐Fly” Next‐Generation DNA Detection

open access: yesAdvanced Functional Materials, EarlyView.
This work presents self‐propelled CRISPR/Cas9‐functionalized Au–MRs for rapid, amplification‐free, “on‐the‐fly” DNA detection. By harnessing motion‐assisted signal recovery, the platform achieved the limit of detection in low fM DNA concentrations, enabling detection across a wide dynamic range within only 5 min, which is significantly faster than any ...
Jyoti   +3 more
wiley   +1 more source

Catalytic TiO2 with Self‐Assembled Monolayer for Highly Sensitive, Selective, and Non‐Invasive Monitoring of Sweat L‐Cysteine

open access: yesAdvanced Functional Materials, EarlyView.
A self‐assembled monolayer of 3‐mercaptopropyltrimethoxysilane (MPTS) molecular receptor and titanium oxide‐modified carbon cloth (MPTS/TiO2/CC) was synthesized for the specific detection of sweat L‐cysteine, which is associated with the precision neutrition, cardiovascular system and neuro system.
Xiangjie Chen   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy