Results 131 to 140 of about 5,212,760 (333)

Oxygen Defect Engineering of Hexagonal Perovskite Oxides to Boost Catalytic Performance for Aerobic Oxidation of Sulfides to Sulfones

open access: yesAdvanced Functional Materials, EarlyView.
Ru‐substituted hexagonal perovskite SrMnO3, featuring face‐shared oxygen species, is designed as an effective heterogeneous catalyst for the aerobic oxidation of sulfides. The catalyst demonstrates high selectivity to sulfones (>99%) under mild reaction conditions (≥30 °C). Ru substitution promotes oxygen vacancy formation of face‐shared oxygen species
Keiju Wachi   +5 more
wiley   +1 more source

H2O2‐Generating Advanced Nanomaterials for Cancer Treatment

open access: yesAdvanced Functional Materials, EarlyView.
H2O2‐generating nanoplatforms can exploit tumor redox imbalance for O2 and toxic reactive oxygen species generation, leading to hypoxia reversal, and apoptosis of cancer cells, respectively. This review highlights the mechanisms of these nanoplatforms, including exogenous H₂O₂ delivery, endogenous amplification, and metal peroxides, which leads to ...
Kiyan Musaie   +8 more
wiley   +1 more source

Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review.

open access: yesJournal of Hazardous Materials, 2021
S. Hena, Leonardo Gutierrez, J. Croué
semanticscholar   +1 more source

Strategies to Design and Optimize Artificial Antigen‐Presenting Cells for T Cell Expansion in Cancer Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley   +1 more source

Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations

open access: yesAdvanced Functional Materials, EarlyView.
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan   +4 more
wiley   +1 more source

3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations

open access: yesAdvanced Functional Materials, EarlyView.
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana   +2 more
wiley   +1 more source

NanoMOF‐Based Multilevel Anti‐Counterfeiting by a Combination of Visible and Invisible Photoluminescence and Conductivity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner   +9 more
wiley   +1 more source

Ionic Metal Poly(heptazine Imides) and Single‐Atoms Interplay: Engineered Stability and Performance for Photocatalysis, Photoelectrocatalysis and Organic Synthesis

open access: yesAdvanced Functional Materials, EarlyView.
Poly(heptazine) imides (PHIs), a crystalline carbon nitride subclass, intercalate metals to deliver high stability, tunable electronics, and efficient charge separation. These features enable solar‐driven applications such as hydrogen evolution, CO₂ reduction, and organic synthesis.
Gabriel A. A. Diab   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy