Results 91 to 100 of about 3,365,655 (295)
Impregnation of Phase Change Materials (PCMs) into a porous medium is a promising way to stabilize their shape and improve thermal conductivity which are essential for thermal energy storage and thermal management of small-size applications, such as ...
Dauvergne, Jean-Luc +8 more
core +1 more source
Cell wall target fragment discovery using a low‐cost, minimal fragment library
LoCoFrag100 is a fragment library made up of 100 different compounds. Similarity between the fragments is minimized and 10 different fragments are mixed into a single cocktail, which is soaked to protein crystals. These crystals are analysed by X‐ray crystallography, revealing the binding modes of the bound fragment ligands.
Kaizhou Yan +5 more
wiley +1 more source
Bone metastasis in prostate cancer (PCa) patients is a clinical hurdle due to the poor understanding of the supportive bone microenvironment. Here, we identify stearoyl‐CoA desaturase (SCD) as a tumor‐promoting enzyme and potential therapeutic target in bone metastatic PCa.
Alexis Wilson +7 more
wiley +1 more source
Subthreshold electrical transport in amorphous phase-change materials
Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated.
Manuel Le Gallo +3 more
doaj +1 more source
Heusler alloys that undergo martensitic transformation in ferromagnetic state are of increasing scientific and technological interest. These alloys show large magnetic field induced strains upon martensitic phase change thus making it a potential ...
Bhobe P A +6 more
core +1 more source
Structural biology of ferritin nanocages
Ferritin is a conserved iron‐storage protein that sequesters iron as a ferric mineral core within a nanocage, protecting cells from oxidative damage and maintaining iron homeostasis. This review discusses ferritin biology, structure, and function, and highlights recent cryo‐EM studies revealing mechanisms of ferritinophagy, cellular iron uptake, and ...
Eloise Mastrangelo, Flavio Di Pisa
wiley +1 more source
Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity
Phase-change materials (PCMs) are the subject of considerable interest because they have been recognized as potential active layers for next-generation non-volatile memory devices, known as Phase Change Random Access Memories (PRAMs).
C. Bichara +7 more
core +3 more sources
Resonant cavities with phase-changing materials
Phase changing materials are commonly used for optical switching, limiting, and sensing. In many important cases, the change in the transmission characteristics of the optical material is caused by light-induced heating. We demonstrate that the incorporation of such optical materials in judiciously designed photonic structures can dramatically alter ...
Roney, Thomas +2 more
openaire +2 more sources
We identified a systemic, progressive loss of protein S‐glutathionylation—detected by nonreducing western blotting—alongside dysregulation of glutathione‐cycle enzymes in both neuronal and peripheral tissues of Taiwanese SMA mice. These alterations were partially rescued by SMN antisense oligonucleotide therapy, revealing persistent redox imbalance as ...
Sofia Vrettou, Brunhilde Wirth
wiley +1 more source
β‐TrCP overexpression enhances cisplatin sensitivity by depleting BRCA1
Low levels of β‐TrCP (Panel A) allow the accumulation of BRCA1 and CtIP, which facilitate the repair of cisplatin‐induced DNA damage via homologous recombination (HR) and promote tumor cell survival. In contrast, high β‐TrCP expression (Panel B) leads to BRCA1 and CtIP degradation, impairing HR repair, resulting in persistent DNA damage and apoptosis ...
Rocío Jiménez‐Guerrero +8 more
wiley +1 more source

