Results 221 to 230 of about 1,659,003 (311)
Bioresorbable and Wireless Rechargeable Implanted Na‐ion Battery for Temporary Medical Devices
An all‐solid‐state bioresorbable Na‐ion battery is developed, composed entirely of bio‐eliminable materials. In vivo and ex vivo tests confirmed harmless disintegration of this implanted battery. Lifetime of the implanted battery can be precisely controlled by adjusting the dissolvable encapsulation layer's thickness.
Vedi Kuyil Azhagan Muniraj+8 more
wiley +1 more source
XANES reference library of sulphur-containing compounds for biological research: a status report from the ASTRA beamline at the SOLARIS National Synchrotron Radiation Centre. [PDF]
Klonecka A+7 more
europepmc +1 more source
Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles
A novel strategy to design thermally induced gelling systems with tunable material properties is reported. Polymeric mixed‐shell micelles displaying multiple thermosensitive patchy domains formed hydrogels by assembling into well‐entangled worm‐like network structures upon heating to body temperature. The patchy micelle design significantly affects the
Binru Han+9 more
wiley +1 more source
Report on the 4th International Conference on Biological Physics (ICBP2001)
Yuzuru Husimi, Nobuhiro Gō
openalex +2 more sources
Turbulent mixing controls fixation of growing antagonistic populations. [PDF]
Bauermann J+4 more
europepmc +1 more source
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski+9 more
wiley +1 more source
Assessment of Catalase Inhibition Under e-Beam Irradiation. [PDF]
Ipatova V+11 more
europepmc +1 more source
Ultrathin, flexible neural probes are developed with an innovative, biomimetic design incorporating brain tissue‐compatible materials. The material system employs biomolecule‐based encapsulation agents to mitigate inflammatory responses, as demonstrated through comprehensive in vitro and in vivo studies.
Jeonghwa Jeong+7 more
wiley +1 more source