Results 111 to 120 of about 431,758 (295)

Molecular Engineering of Coacervate Network Binders for Stable Silicon‐Based Anodes in Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A coacervate charged polymer network is designed to regulate Coulomb interactions for stabilizing silicon anodes. By tuning electrostatic interactions, the binders enhance adhesion, stress dissipation, and interfacial stability. The binder with the strongest Coulomb interactions enables high areal capacities and stable full‐cell cycling with Ni‐rich ...
Dong‐Yeob Han   +7 more
wiley   +1 more source

Selective and Precise Editing of Digital Polymers Through Parallel or Series Toehold‐Mediated Strand Displacement

open access: yesAdvanced Functional Materials, EarlyView.
A sequence‐encoded supramolecular construct containing two accessible toeholds is developed herein for enabling multiple editing operations. By introducing specific input strands, it is possible to selectively erase or rewrite digital content through parallel or series toehold‐mediated strand displacement (PTMSD or STMSD).
Jakub Ossowski   +3 more
wiley   +1 more source

Nano Carbon Doped Polyacrylamide Gel Electrolytes for High Performance Supercapacitors. [PDF]

open access: yesMolecules, 2021
Azizighannad S   +4 more
europepmc   +1 more source

Sequence analysis of 5′[32P labeled mRNA and tRNA using polyacrylamide gel electrophoresis [PDF]

open access: green, 1978
Raymond E. Lockard   +5 more
openalex   +1 more source

Precision Photothermal Therapy at Mild Temperature: NIR‐II Imaging‐Guided, H2O2‐Responsive Stealth Nanobomb

open access: yesAdvanced Healthcare Materials, EarlyView.
The new generation nanobomb, termed the stealth nanobomb, is fabricated through self‐assembly using a polymeric carbon monoxide carrier (PLGA(CO)), small molecule near‐infrared‐active agents (2TT‐OC46B), and phospholipid polyethylene glycol (DSPE‐mPEG2000). The stealth nanobomb can circulate in the bloodstream and specifically target pancreatic cancer,
Gongcheng Ma   +10 more
wiley   +1 more source

TPMS‐Gyroid Scaffold‐Mediated Up‐Regulation of ITGB1 for Enhanced Cell Adhesion and Immune‐Modulatory Osteogenesis

open access: yesAdvanced Healthcare Materials, EarlyView.
A) SLM generates biomimetic bone scaffolds with consistent porosity but varying TPMS‐Gyroid unit cell designs (TG15, TG20, TG25, TG30). B) By enhancing the expression of ITGB1, TPMS‐Gyroid scaffolds can facilitate osteogenic differentiation in BMSCs and promote M2 polarization in macrophages.
Jing Wang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy