Results 211 to 220 of about 722,396 (378)

The NSP5, ORF6 and NSP13 of SARS‐CoV‐2 Cooperate to Modulate Inflammatory Cell Death Activation

open access: yesAdvanced Science, EarlyView.
ZBP1 is capable of initiating a large cell death complex to induce programmed cell death during SARS‐CoV‐2 infection. However, SARS‐CoV‐2 can inhibit the activation of ZBP1‐mediated cell death by targeting key components of this complex. This suppression of ZBP1‐mediated cell death may account for the increased mortality observed in patients co ...
Huan Wang   +16 more
wiley   +1 more source

AGAPIR: A Novel PIWI‐Interacting RNA Enhancing Post‐Decompression Angiogenesis in Degenerative Cervical Myelopathy

open access: yesAdvanced Science, EarlyView.
The restoration of blood flow following surgical decompression for degenerative cervical myelopathy (DCM) significantly contributes to the amelioration of neurological deficits. This study identifies AGAPIR, an angiogenesis‐associated PIWI‐interacting RNA, enhances angiogenesis and motor function recovery post‐spinal cord decompression in a mouse model
Yongheng Xie   +8 more
wiley   +1 more source

A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP Synthase [PDF]

open access: yes
A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F sub 1 moiety from the Escherichia coli ATP Synthase.
Hochstein, Lawrence I.   +1 more
core   +1 more source

PCSK9 Loss‐of‐Function Disrupts Cellular Microfilament Network via LIN28A/HES5/JMY Axis in Neural Tube Defects

open access: yesAdvanced Science, EarlyView.
PCSK9 acts as a molecular chaperone promoting LIN28A lysosomal degradation. LIN28A elevates transcription factor HES5, increasing JMY expression. PCSK9 loss causes neural tube defects (NTDs) by disrupting the LIN28A/HES5/JMY axis, and high JMY disorganizes the neural progenitor cell microfilament network, leading to incomplete neural tube structure in ...
Xiaoshuai Li   +6 more
wiley   +1 more source

NEAT1 Promotes Epileptogenesis in Tuberous Sclerosis Complex

open access: yesAdvanced Science, EarlyView.
The primary neurological manifestations of tuberous sclerosis complex (TSC) are intractable epilepsy and intellectual disability. NEAT1 is differentially expressed in TSC‐related epilepsy and influences neuronal excitability by regulating the PI3K/AKT/mTOR signaling pathway.
Suhui Kuang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy