Results 81 to 90 of about 21,053 (308)

A Tangentially Sensitive Tactile Sensor Reveals the Stick‐Slip Mechanism and Enhances Robotic Tactile Sensing

open access: yesAdvanced Science, EarlyView.
An ultralight, multilayer anisotropic tactile sensor—an artificial Pacinian corpuscle—exhibits ultrahigh tangential sensitivity (1022 kPa−1) and spatiotemporal sensing. It discriminates static, sliding, and rolling contacts, detects incipient stick–slip via high‑frequency signatures, and enhances robotic touch (100%/98.18% accuracy for active/passive ...
Jinghui Wang   +12 more
wiley   +1 more source

High‐Entropy Ferroelectric‐Ferroelastic Hybrid for Ultrahigh and Temperature‐Insensitive Dielectric Energy Storage

open access: yesAdvanced Science, EarlyView.
A high‐entropy ferroelectric‐ferroelastic hybrid perovskite material is successfully developed, in which a unique hybrid architecture, ferroelastic microdomainsembedded with randomly dispersed polar nanoregions, endows the ceramic with polar heterogeneity as well as lowered polarization hysteresis, delayed saturation polarization and enhanced breakdown
Xuefan Zhou   +6 more
wiley   +1 more source

Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale

open access: yesNature Communications
Given the highly temperature-sensitive nature of the polymorphic phase boundaries, attaining excellent piezoelectric coefficient with superior temperature stability in lead-free piezoceramics via direct compositional design remains a formidable challenge.
Jinzhu Zou   +7 more
doaj   +1 more source

Fabricating and Characterization of MPEA Binder Phase Cemented Carbide and Its Comparison with WC-Co

open access: yesMetals
The development and research of physically superior multi-principal element alloy (MPEA) binders as cemented carbide binders is a hot topic. In this work, we fabricated a new type of MPEA binder-cemented carbide using the powder metallurgy method and ...
Shuailong Zhang   +5 more
doaj   +1 more source

Deformable Eutectic Alloy With Near‐Theoretical Yield Strength via Hierarchical Nanoscale Multiphases and Sessile Defects

open access: yesAdvanced Science, EarlyView.
A CoCrFeNiTa0.4 eutectic high‐entropy alloy achieves a near‐theoretical yield strength of 2.6 GPa with 13.6% plasticity. This breakthrough stems from a hierarchical nanostructure (FCC‐Laves lamellae with L12/D022 precipitates), which alleviates the inter‐phase modulus/hardness mismatch through synergistic strengthening and toughening, guiding the ...
Yusha Luo   +10 more
wiley   +1 more source

Hierarchically Porous Nitrogen‐Doped Carbon with High Conductivity for Rapid and Efficient Cr(VI) Reduction

open access: yesAdvanced Science, EarlyView.
The d‐PNC(1100, 10%) catalyst, synthesized via a zinc‐based ionic liquid self‐sacrificing pore‐forming strategy to create a defect‐rich, hierarchical, nitrogen‐doped porous structure, enhances conductivity, promotes rapid mass transfer and synergistic catalytic activity, driving efficient Cr(VI) reduction in OA solution to generate Cr(III)‐OA complexes.
Danyan Lin   +7 more
wiley   +1 more source

Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance

open access: yesnpj Computational Materials
Lightweight refractory high-entropy alloys (LW-RHEAs) hold significant potential in the fields of aviation, aerospace, and nuclear energy due to their low density, high strength, high hardness, and corrosion resistance.
Tianchuang Gao   +3 more
doaj   +1 more source

Non‐Equilibrium Synthesis Methods to Create Metastable and High‐Entropy Nanomaterials

open access: yesAdvanced Science, EarlyView.
ABSTRACT Stabilizing multiple elements within a single phase enables the creation of advanced materials with exceptional properties arising from their complex composition. However, under equilibrium conditions, the Hume–Rothery rules impose strict limitations on solid‐state miscibility, restricting combinations of elements with mismatched crystal ...
Shuo Liu   +3 more
wiley   +1 more source

Basal Plane Activation of SnS2 Thin‐Film by Fluorine Doping for Selective Solar‐Driven CO2 Reduction With Enhanced Quantum Efficiency

open access: yesAdvanced Science, EarlyView.
The synergistic effect of fluorine doping and sulfur vacancies boosts the activity of the active sites without active‐site modulation, leading to enhanced CO2 photoreduction efficiency and a selectivity switch from CH4 to CO on tin disulfide continuous thin films. ABSTRACT Photocatalytic conversion of CO2 into value‐added fuels offers a viable approach
Tadios Tesfaye Mamo   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy