Results 211 to 220 of about 24,286 (311)

Dual‐Interface Engineering of the Source Electrode to Overcome the Intrinsic Injection‐Leakage Trade‐Off in Organic Schottky Barrier Transistors

open access: yesAdvanced Functional Materials, EarlyView.
A charge injection layer is introduced via RIE to decouple the dual functions of the source electrode: lowering contact resistance through doping to enhance charge injection, while SAM modification on the top surface minimizes leakage current. This strategy enables OSBTs to achieve a high on/off ratio with improved stability and performance.
Hye Ryun Sim   +6 more
wiley   +1 more source

Living Liquid Metal Composites Embedded with Electrogenic Endospores for Next‐Generation Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley   +1 more source

Efficient NiOx Hole Transport Layers Enabled by Multifunctional MXenes for High‐Performance Tin‐Lead Perovskite Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
An efficient NiOx HTL is successfully prepared by introducing MXene as an additive without further surface modification to fabricate high‐performance FASn0.5Pb0.5I3 perovskite solar cells. The introduction of MXene contributes to improved conductivity of NiOx, better aligned at NiOx/perovskite interfaces, and enhanced quality of perovskite films ...
Lijun Chen   +12 more
wiley   +1 more source

In Materia Shaping of Randomness with a Standard Complementary Metal‐Oxide‐Semiconductor Transistor for Task‐Adaptive Entropy Generation

open access: yesAdvanced Functional Materials, EarlyView.
This study establishes a materials‐driven framework for entropy generation within standard CMOS technology. By electrically rebalancing gate‐oxide traps and Si‐channel defects in foundry‐fabricated FDSOI transistors, the work realizes in‐materia control of temporal correlation – achieving task adaptive entropy optimization for reinforcement learning ...
Been Kwak   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy