Results 131 to 140 of about 263,832 (306)
The electrical network is the set of elements where loads are connected to the generation plants by transmission lines. They can be either overhead or underground cables.
Samira Boumous +2 more
doaj +1 more source
Dynamic Thermal Rating of Overhead Power Lines
Etterspørselen etter elektrisk energi er økende over hele verden. Kompleksiteten og variasjonene i både produksjon og forbruk øker også, som et resultat av flere fornybare energikilder. På grunn av denne utviklingen er det viktig å utnytte kapasiteten eksisterende kraftlinjer bedre. Tidligere har statiske grenselaster vært den vanligste måten å betjene
openaire +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source
In order to prevent trip and damage of 110 kV power supply line caused by thunder and meanwhile satisfy demand of production increase, reform and extension design of ring network of 110 kV substation of Liuzhuang Coal Mine was done, lightning protection ...
WANG Xiu-hong
doaj
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley +1 more source
Capacitive, charge‐domain compute‐in‐memory (CIM) stores weights as capacitance,eliminating DC sneak paths and IR‐drop, yielding near‐zero standbypower. In this perspective, we present a device to systems level performance analysis of most promising architectures and predict apathway for upscaling capacitive CIM for sustainable edge computing ...
Kapil Bhardwaj +2 more
wiley +1 more source
Deep learning‐based denoising models are applied to DNA data storage systems to enhance error reduction and data fidelity. By integrating DnCNN with DNA sequence encoding methods, the study demonstrates significant improvements in image quality and correction of substitution errors, revealing a promising path toward robust and efficient DNA‐based ...
Seongjun Seo +5 more
wiley +1 more source
A low‐cost, self‐driving laboratory is developed to democratize autonomous materials discovery. Using this "frugal twin" hardware architecture with Bayesian optimization, the platform rapidly converges to target lower critical solution temperature (LCST) values while self‐correcting from off‐target experiments, demonstrating an accessible route to data‐
Guoyue Xu, Renzheng Zhang, Tengfei Luo
wiley +1 more source
Revealing Protein–Protein Interactions Using a Graph Theory‐Augmented Deep Learning Approach
This study presents a fast, cost‐efficient approach for classifying protein–protein interactions by integrating graph‐theory parametrization with deep learning (DL). Multiscale features extracted from graph‐encoded polarized‐light microscopy (PLM) images enable accurate prediction of binding strengths.
Bahar Dadfar +5 more
wiley +1 more source

