Results 31 to 40 of about 224,756 (248)
Towards an extended/higher correspondence
In this short paper, we will review the proposal of a correspondence between the doubled geometry of Double Field Theory and the higher geometry of bundle gerbes.
Alfonsi Luigi
doaj +1 more source
Chern character in twisted K-theory: equivariant and holomorphic cases [PDF]
It has been argued by Witten and others that in the presence of a nontrivial B-field, D-brane charges in type IIB string theories are measured by twisted K-theory.
Mathai, Varghese, Stevenson, Danny
core +7 more sources
Linear and projective connections over a smooth manifold
The principal bundles of the first order coframes and the second order coframes, as well as factor bundle of centroprojective (coaffine) coframes are considered.
Yu. I. Shevchenko, A. V. Vyalova
doaj +1 more source
The composition equipment for congruence of hypercentred planes
In n-dimensional projective space Pn a manifold , i. e., a congruence of hypercentered planes , is considered. By a hypercentered planе we mean m-dimensional plane with a (m – 1)-dimensional hyperplane , distinguished in it.
A. V. Vyalova
doaj +1 more source
Glued linear connection on surface of the projective space
We consider a surface as a variety of centered planes in a multidimensional projective space. A fiber bundle of the linear coframes appears over this manifold. It is important to emphasize the fiber bundle is not the principal bundle.
K.V. Bashashina
doaj +1 more source
Nontrivial Deformation of a Trivial Bundle [PDF]
The ${\rm SU}(2)$-prolongation of the Hopf fibration $S^3\to S^2$ is a trivializable principal ${\rm SU}(2)$-bundle. We present a noncommutative deformation of this bundle to a quantum principal ${\rm SU}_q(2)$-bundle that is not trivializable.
Hajac, Piotr M., Zieliński, Bartosz
core +1 more source
Classification of extensions of principal bundles and transitive Lie groupoids with prescribed kernel and cokernel [PDF]
The equivalence of principal bundles with transitive Lie groupoids due to Ehresmann is a well known result. A remarkable generalisation of this equivalence, due to Mackenzie, is the equivalence of principal bundle extensions with those transitive Lie groupoids over the total space of a principal bundle, which also admit an action of the structure group
arxiv +1 more source
Geometry of classical Higgs fields [PDF]
In gauge theory, Higgs fields are responsible for spontaneous symmetry breaking. In classical gauge theory on a principal bundle P, a symmetry breaking is defined as the reduction of a structure group of this principal bundle to a subgroup H of exact ...
Sardanashvily, G.
core +1 more source
On equivariant Serre problem for principal bundles [PDF]
Let $E_G$ be a $\Gamma$--equivariant algebraic principal $G$--bundle over a normal complex affine variety $X$ equipped with an action of $\Gamma$, where $G$ and $\Gamma$ are complex linear algebraic groups.
Biswas, Indranil+2 more
core +2 more sources
Curvature tensor of connection in principal bundle of Cartan's projective connection space
We considered Cartan's projective connection space with structure equations generalizing the structure equations of the projective space and the condition of local projectivity (this condition is an analogue to the equiprojectivity condition in the ...
K. Bashashina
doaj +1 more source