Results 61 to 70 of about 224,756 (248)
Induced connections of two types on a surface of an affine space
In the affine space the fundamental-group connection in the bundle associated with a surface as a manifold of tangent planes is investigated. The principal bundle contains a quotient bundle of tangent frames, the typical fiber of which is a linear group ...
A. Shults
doaj +1 more source
Exotic spheres’ metrics and solutions via Kaluza-Klein techniques
By applying an inverse Kaluza-Klein procedure, we provide explicit coordinate expressions for Riemannian metrics on two homeomorphic but not diffeomorphic spheres in seven dimensions.
T. Schettini Gherardini
doaj +1 more source
The noncommutative geometry of Yang-Mills fields
We generalize to topologically non-trivial gauge configurations the description of the Einstein-Yang-Mills system in terms of a noncommutative manifold, as was done previously by Chamseddine and Connes.
Atiyah+24 more
core +1 more source
A closer look at semistability for singular principal bundles [PDF]
We substantially refine the theory of singular principal bundles introduced in a former paper. In particular, we show that we need only honest singular principal bundles in our compactification. These are objects which carry the structure of a rational principal bundle in the sense of Ramanathan.
arxiv +1 more source
Monodromy for principal bundles
Abstract Given a strongly semistable principal bundle E G over a curve, in Biswas et al. (2006) [4] , a group-scheme for it was constructed, which was named as the monodromy group-scheme. Here we extend the construction of the monodromy group-scheme to principal bundles over higher dimensional varieties.
openaire +2 more sources
Сurvature-torsion tensor for Cartan connection
A Lie group containing a subgroup is considered. Such a group is a principal bundle, a typical fiber of this principal bundle is the subgroup and a base is a homogeneous space, which is obtained by factoring the group by the subgroup.
Yu. Shevchenko
doaj +1 more source
This paper gives an introduction to certain classical physical theories described in the context of locally Minkowskian causal structures (LMCSs). For simplicity of exposition we consider LMCSs which have locally Euclidean topology (i.e., are manifolds ...
John Mashford
doaj +1 more source
Differential geometry of collective models
The classical astrophysical theory of Riemann ellipsoids and the quantum nuclear theory of Bohr and Mottelson share a common mathematical foundation in terms of the differential geometry of a principal bundle ${\cal P}$ and its associated vector bundle E,
George Rosensteel
doaj +1 more source
Principal bundle groupoids, their gauge group and their nerve [PDF]
We consider groupoids in the category of principal bundles, which we call principal bundles (PB) groupoids. Inspired by work by Th. Nikolaus and K. Waldorf, we generalise bundle gerbes over manifolds to bundle gerbes over groupoids and discuss a functorial correspondence between PB groupoids and bundle gerbes over groupoids.
arxiv
Interaction between axons and specific populations of surrounding cells is indispensable for collateral formation in the mammillary system. [PDF]
An essential phenomenon during brain development is the extension of long collateral branches by axons. How the local cellular environment contributes to the initial sprouting of these branches in specific points of an axonal shaft remains unclear.The ...
Nora-Emöke Szabó+5 more
doaj +1 more source