Results 171 to 180 of about 13,873 (186)

MnI‐Functionalized Covalent Organic Framework as Efficient Electrocatalyst for CO2 Reduction in a Catholyte‐Free Zero‐Gap Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies   +8 more
wiley   +1 more source

Copper Doping Enhances the Activity and Selectivity of Atomically Precise Ag44 Nanoclusters for Photocatalytic CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu   +5 more
wiley   +1 more source

Self‐supportive Three‐Way Photoelectrochemical System Achieving Uranium Recycling, Organic Oxidation, and Electricity Generation in Complex Waters

open access: yesAdvanced Functional Materials, EarlyView.
A self‐sustaining solar photoelectrochemical cell (SS‐PEC) is developed to recover uranium from aqueous UO22+ with concurrent organic oxidation and electricity production. The monolithical photoanode directly captures electrons from organic compounds, leading to the oxidation of organic compounds and the decomposition of uranium‐organic complexes ...
Yumei Wang   +7 more
wiley   +1 more source

Reconfigurable Three‐Dimensional Superconducting Nanoarchitectures

open access: yesAdvanced Functional Materials, EarlyView.
3D superconducting nanostructures offer new possibilities for emergent physical phenomena. However, fabricating complex geometries remains challenging. Here 3D nanoprinting of complex 3D superconducting nanoarchitectures is established. As well as propagating superconducting vortices in 3D, anisotropic superconducting properties with geometric ...
Elina Zhakina   +11 more
wiley   +1 more source

Flux‐Regulated Crystallization of Perovskites Using Machine Learning‐Predicted Solvent Evaporation Rates for X‐Ray Detectors

open access: yesAdvanced Functional Materials, EarlyView.
By integrating machine learning into flux‐regulated crystallization (FRC), accurate prediction of solvent evaporation rates in real time, improving crystallization control and reducing crystal growth variability by over threefold, is achieved. This enhances the reproducibility and quality of perovskite single crystals, leading to reproducible ...
Tatiane Pretto   +8 more
wiley   +1 more source

The Influence of Annealing on the Sb Layer in the Synthesis of [001]‐Oriented Sb2Se3 Film for Photoelectrochemical Hydrogen Gas Generation

open access: yesAdvanced Functional Materials, EarlyView.
[001]‐oriented Sb2Se3 film with improved crystallinity and adjusted composition is achieved via a new thermal treatment approach consisting of preliminary annealing of the Sb layer before its selenization. The findings of this work demonstrate enhanced charge carriers' transportation, a stable performance, and an improvement of H2 generation from ...
Magno B. Costa   +7 more
wiley   +1 more source

Printed Integrated Logic Circuits Based on Chitosan‐Gated Organic Transistors for Future Edible Systems

open access: yesAdvanced Functional Materials, EarlyView.
Edible electronics needs integrated logic circuits for computation and control. This work presents a potentially edible printed chitosan‐gated transistor with a design optimized for integration in circuits. Its implementation in integrated logic gates and circuits operating at low voltage (0.7 V) is demonstrated, as well as the compatibility with an ...
Giulia Coco   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy