Results 121 to 130 of about 451,551 (359)

Elastic Energy Storage in Biological Materials: Internal Stresses and Their Functionality

open access: yesAdvanced Materials, EarlyView.
Harnessing and storing internally generated elastic energy is a clever strategy by biological materials to perform functions like shape transformation, movement, and predation. This review explores how biological systems manipulate mechanisms like atomic or protein integration into minerals, protein conformational shifts, phase transitions, and osmotic
Shahrouz Amini   +3 more
wiley   +1 more source

Full Crystallographic Imaging of Hexagonal Boron Nitride Monolayers with Phonon‐Enhanced Sum‐Frequency Microscopy

open access: yesAdvanced Materials, EarlyView.
A nonlinear optical microscopy technique is introduced that enables rapid imaging of hexagonal boron nitride monolayers, which are usually optically invisible. The nonlinear mixing of mid‐infrared and visible laser pulses enables full crystallographic imaging through phase‐resolved sum‐frequency generation microscopy, where the resonant excitation of a
Niclas S. Mueller   +15 more
wiley   +1 more source

Generalized Jensen functional equation on restricted domain

open access: yesAnnals of the West University of Timisoara: Mathematics and Computer Science, 2014
We prove the Hyers-Ulam stability on restricted domains of generalized Jensen functional ...
Chahbi Abdellatif   +3 more
doaj   +1 more source

Emergent Motility of Self‐Organized Particle‐Giant Unilamellar Vesicle Assembly

open access: yesAdvanced Materials, EarlyView.
Giant unilamellar vesicles (GUVs), when combined with silica particles under alternating electric fields, spontaneously self‐assemble into motile structures. Asymmetric particle decoration induces fluid flows that propel the assemblies, enabling persistent motion and reversible control.
Selcan Karaz   +5 more
wiley   +1 more source

Soft and Strong: Elastic Conductors with Bio‐Inspired Self‐Protection

open access: yesAdvanced Materials, EarlyView.
A general reverse‐engineering approach is demonstrated for designing functional yarns that uses woven fabric architecture as a structural framework. The fabric‐based stretchable conductive yarns combine flexibility, high elasticity, low stiffness, self‐protection, and weavability with conventional textile processes. By fine‐tuning the number of elastic
Chenglong Zhang   +12 more
wiley   +1 more source

Harnessing Self‐Sensitized Scintillation by Supramolecular Engineering of CsPbBr3 Nanocrystals in Dense Mesoporous Template Nanospheres

open access: yesAdvanced Materials, EarlyView.
Perovskite CsPbBr3 nanocrystals exhibit bright emission, fast response, and solution processability, but their nanoscale size limits efficient radiation detection. Organizing them into porous SiO2 mesospheres enhances radioluminescence up to 40 times, achieving an optimal combination of light yield, fast scintillation, and processability, providing a ...
Xiaohe Zhou   +14 more
wiley   +1 more source

Adaptive Twisting Metamaterials

open access: yesAdvanced Materials, EarlyView.
This work introduces torque‐controlled twisting metamaterials as a transformative platform for adaptive crashworthiness. By combining multiscale predictive modeling with experimental validation on additively manufactured gyroids, it demonstrates tunable stiffness, collapse stress, and energy absorption.
Mattia Utzeri   +6 more
wiley   +1 more source

Strain Engineering of Ge Quantum Wells in Planar Ge/Si1 − xGex Heterostructures

open access: yesAdvanced Materials Interfaces, EarlyView.
Germanium is explored as a promising semiconductor for quantum applications due to long hole spin coherence, superconducting correlations, and CMOS compatibility. This work investigates in‐plane and out‐of‐plane strain in Ge quantum wells embedded in Si1 − xGex barriers to engineer the electronic properties of the wells.
Arianna Nigro   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy