Results 111 to 120 of about 1,516,017 (282)
Entanglement engineering and topological protection by discrete-time quantum walks
Discrete-time quantum walks (QWs) represent robust and versatile platforms for the controlled engineering of single particle quantum dynamics, and have attracted special attention due to their algorithmic applications in quantum information science. Even
Lewenstein, Maciej +2 more
core +1 more source
Two‐Dimensional Materials as a Multiproperty Sensing Platform
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana +11 more
wiley +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
This review summarizes the main uptake pathways of bioactive glass nanoparticles (BGNs) and their intracellular localization, highlighting that BGNs are mainly internalized and entrapped within endosomes/lysosomes. Strategies for controlled intracellular ion release, with implications for targeted modulation of cell behavior, are discussed. The need to
Andrada‐Ioana Damian‐Buda +1 more
wiley +1 more source
We investigate steady-state entanglement in a hybrid optomechanical cavity coupled to a Rydberg atomic ensemble confined within a single blockade region. The ensemble behaves as one superatom due to the rigid dipole blockade effect.
Dong Yan +6 more
doaj +1 more source
Advancing from MOFs and COFs to Functional Macroscopic Porous Constructs
This review study investigates the recent progress and methodologies for manufacturing metal–organic framework (MOF) or covalent–organic framework (COF)‐based 3D structured macroscopic porous constructs with high structural integrity, providing the possibility to control their porosity across dimensions.
Seyyed Alireza Hashemi +8 more
wiley +1 more source
Quantifying Unknown Multiqubit Entanglement Using Machine Learning
Entanglement plays a pivotal role in numerous quantum applications, and as technology progresses, entanglement systems continue to expand. However, quantifying entanglement is a complex problem, particularly for multipartite quantum states. The currently
Yukun Wang +4 more
doaj +1 more source
Computational Modeling of Reticular Materials: The Past, the Present, and the Future
Reticular materials are advanced materials with applications in emerging technologies. A thorough understanding of material properties at operating conditions is critical to accelerate the deployment at an industrial scale. Herein, the status of computational modeling of reticular materials is reviewed, supplemented with topical examples highlighting ...
Wim Temmerman +3 more
wiley +1 more source
Persistent Ballistic Entanglement Spreading with Optimal Control in Quantum Spin Chains [PDF]
Ying Lü +4 more
openalex +1 more source
Retrospective Review on Reticular Materials: Facts and Figures Over the Last 30 Years
To shape the future course of research in reticular materials, this work reflects on the progress over the past 30 years, complemented by input from the community of 228 active researchers through a global, crowdsourced survey: ranging from demographics, how it works, publish and interact, to highlights on both academic and industrial milestones, as ...
Aamod V. Desai +8 more
wiley +1 more source

