Results 81 to 90 of about 1,355,808 (351)

Quantum Entanglement in Deep Learning Architectures. [PDF]

open access: yesPhysical Review Letters, 2018
Modern deep learning has enabled unprecedented achievements in various domains. Nonetheless, employment of machine learning for wave function representations is focused on more traditional architectures such as restricted Boltzmann machines (RBMs) and ...
Yoav Levine   +3 more
semanticscholar   +1 more source

Consolidate Overview of Ribonucleic Acid Molecular Dynamics: From Molecular Movements to Material Innovations

open access: yesAdvanced Engineering Materials, EarlyView.
Molecular dynamics simulations are advancing the study of ribonucleic acid (RNA) and RNA‐conjugated molecules. These developments include improvements in force fields, long‐timescale dynamics, and coarse‐grained models, addressing limitations and refining methods.
Kanchan Yadav, Iksoo Jang, Jong Bum Lee
wiley   +1 more source

Quantum Entanglement Growth Under Random Unitary Dynamics [PDF]

open access: yes, 2016
Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian
A. Nahum   +3 more
semanticscholar   +1 more source

Structurally Colored Physically Unclonable Functions with Ultra‐Rich and Stable Encoding Capacity

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
This study reports a design strategy for generating bright‐field resolvable physically unclonable functions with extremely rich encoding capacity coupled with outstanding thermal and chemical stability. The optical response emerges from thickness‐dependent structural color formation in ZnO features, which are fabricated by physical vapor deposition ...
Abidin Esidir   +8 more
wiley   +1 more source

Detecting quantum entanglement

open access: yesTheoretical Computer Science, 2002
We review the criteria for separability and quantum entanglement, both in a bipartite as well as a multipartite setting. We discuss Bell inequalities, entanglement witnesses, entropic inequalities, bound entanglement and several features of multipartite entanglement.
openaire   +2 more sources

ErMn6Sn6: A Promising Kagome Antiferromagnetic Candidate for Room‐Temperature Nernst Effect‐Based Thermoelectrics

open access: yesAdvanced Functional Materials, EarlyView.
This work investigates the Nernst effect in the Kagome magnet ErMn6Sn6 which exhibits both topological and anomalous Nernst effects with the anomalous Nernst coefficient reaching 1.71 µV K⁻¹ at 300 K. This value surpasses that of most canted antiferromagnetic materials, making ErMn6Sn6 a promising candidate for advancing thermoelectric devices based on
Olajumoke Oluwatobiloba Emmanuel   +2 more
wiley   +1 more source

Entanglement in Quantum Critical Phenomena [PDF]

open access: yesPhysical Review Letters, 2003
Quantum phase transitions occur at zero temperature and involve the appearance of long-range correlations. These correlations are not due to thermal fluctuations but to the intricate structure of a strongly entangled ground state of the system. We present a microscopic computation of the scaling properties of the ground-state entanglement in several 1D
Vidal, G.   +3 more
openaire   +7 more sources

Stratum Corneum‐Inspired Zwitterionic Hydrogels with Intrinsic Water Retention and Anti‐Freezing Properties for Intelligent Flexible Sensors

open access: yesAdvanced Functional Materials, EarlyView.
A novel stratum corneum‐inspired zwitterionic hydrogel is developed for intelligent, flexible sensors, featuring intrinsic water retention and anti‐freezing properties. The quasi‐gel, composed of hygroscopic polymers and bound water, maintains its softness across a wide range of humidity.
Meng Wu   +8 more
wiley   +1 more source

Terahertz‐Driven Ultrafast Dynamics of Rare‐Earth Nickelates by Controlling Only the Charge Degree of Freedom

open access: yesAdvanced Functional Materials, EarlyView.
The THz drive of the Mott insulating state of a rare‐earth nickelate induces instantaneous insulator‐metal transition via quantum tunneling of valence electrons across the bandgap. This transition is pure electronic and highly non‐thermal, which may find its applications in ultrafast opto‐electronics with enhanced performance and minimal device size ...
Gulloo Lal Prajapati   +7 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy