Results 161 to 170 of about 3,667 (257)

In Vivo‐Like Scaffold‐Free 3D In Vitro Models of Muscular Dystrophies: The Case for Anchored Cell Sheet Engineering in Personalized Medicine

open access: yesAdvanced Healthcare Materials, EarlyView.
The scaffold‐free Anchored Cell Sheet Engineering platform is used to create three‐dimensional (3D) in vitro models of skeletal muscle tissue that replicate key features of Duchenne and Myotonic dystrophies. These personalized tissue models, validated by histological, immunostaining, and proteomics analyses, accurately mimic disease phenotypes and ...
Alireza Shahin‐Shamsabadi   +1 more
wiley   +1 more source

Prevalence and diversity of TAL effector-like proteins in fungal endosymbiotic Mycetohabitans spp. [PDF]

open access: yesMicrob Genom
Carpenter SCD   +7 more
europepmc   +1 more source

Bioprinting Perfusable and Vascularized Skeletal Muscle Flaps for the Treatment of Volumetric Muscle Loss

open access: yesAdvanced Healthcare Materials, EarlyView.
Volumetric muscle loss (VML) due to trauma or surgery, often leads to physical impairments. Traditional treatments rely on autologous flaps, limited by muscle availability often leading to donor site morbidity. This study presents multimodal bioprinting as an innovative approach for fabricating vascularized muscle flaps with 3D‐printed macrovessels ...
Eliana O. Fischer   +8 more
wiley   +1 more source

Lycium‐Barbarum Polysaccharide‐Loaded Dual‐Crosslinked Rigid Hydrogel Enhances Bone Healing in Diabetic Bone Defects by Scavenging Reactive Oxygen Species

open access: yesAdvanced Healthcare Materials, EarlyView.
A novel hydrogel (HLBP) incorporating natural polysaccharides from goji berries is developed to enhance diabetic bone defect healing. The hydrogel efficiently scavenges ROS, improves osteogenic differentiation, and promotes in vivo bone regeneration. This strategy offers a biocompatible and localized approach, overcoming the challenges of traditional ...
Wenjie Zhong   +9 more
wiley   +1 more source

TPMS‐Gyroid Scaffold‐Mediated Up‐Regulation of ITGB1 for Enhanced Cell Adhesion and Immune‐Modulatory Osteogenesis

open access: yesAdvanced Healthcare Materials, EarlyView.
A) SLM generates biomimetic bone scaffolds with consistent porosity but varying TPMS‐Gyroid unit cell designs (TG15, TG20, TG25, TG30). B) By enhancing the expression of ITGB1, TPMS‐Gyroid scaffolds can facilitate osteogenic differentiation in BMSCs and promote M2 polarization in macrophages.
Jing Wang   +9 more
wiley   +1 more source

Self‐Healing Hydrogel Dressing with Solubilized Flavonoids for Whole Layer Regeneration of Diabetic Wound

open access: yesAdvanced Healthcare Materials, EarlyView.
High glucose‐ and acid‐responsive hydrogel with dynamic covalent bond solubilized with flavonoids (Gel‐Flavonoids) is designed for diabetic wound healing. The Gel‐Flavonoids adapt to irregular wound shapes and release antioxidants in high‐glucose environments, effectively reducing reactive oxygen species.
Qiang Zeng   +9 more
wiley   +1 more source

Designing for Degradation: Transient Devices Enabled by (Nano)Cellulose

open access: yesAdvanced Materials, EarlyView.
Recent progress in transient devices enabled by (nano)cellulosic materials is reviewed. Transiency mechanisms, advantages of nanocelluloses, and a suite of applications are discussed. A circular thinking approach coupled with life cycle assessment is applied to critically revisit the potential, advantages, and challenges of nanocellulose‐enabled ...
Lucas J. Andrew   +2 more
wiley   +1 more source

Integrated Pristine van der Waals Homojunctions for Self‐Powered Image Sensors

open access: yesAdvanced Materials, EarlyView.
Pristine van der Waals homojunctions consisting of 2H‐MoTe2 layers with asymmetric thickness are constructed to eliminate heterogenous interfaces and obtain clean boundaries. The layer‐engineered energy bands of 2H‐MoTe2 layers induce a built‐in electric field at the interface, enabling self‐powered photodetection. Furthermore, a 10 × 10 array based on
Yunxia Hu   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy