Results 291 to 300 of about 67,581 (340)
Contributions of the multiple demand network to emergent and skilled reading. [PDF]
Chrabaszcz A +3 more
europepmc +1 more source
This review outlines how understanding bone's biology, hierarchical architecture, and mechanical anisotropy informs the design of lattice structures that replicate bone morphology and mechanical behavior. Additive manufacturing enables the fabrication of orthopedic implants that incorporate such structures using a range of engineering materials ...
Stylianos Kechagias +4 more
wiley +1 more source
Hydrogel Confinement Strategies for 3D Cell Culture in Microfluidic Systems
Hydrogel confinement structures are key to organizing 3D cell cultures in microfluidic devices. This review classifies five structural strategies (micropillar, phaseguide, porous membrane, stepped‐height, and support‐free) and examines their trade‐offs alongside fabrication methods.
Soohyun Kim, Min Seok Lee, Sung Kyun Lee
wiley +1 more source
Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE. [PDF]
Tosi F +46 more
europepmc +1 more source
Anti‐Slip Material‐Based Strategies and Approaches
This review highlights the principle mechanisms of slipping at the microscale, linking contact mechanics with a friction behavior model for surface interfaces. Main strategies to develop anti‐slip properties to the surfaces are discussed alongside standardized testing approaches.
Sogand Abbaspoor‐Zanjani +3 more
wiley +1 more source
COVID-19 vaccine hesitancy among adults in Liberia, April-May 2021. [PDF]
Sanvee-Blebo LM +8 more
europepmc +1 more source
This review explores advances in wearable and lab‐on‐chip technologies for breast cancer detection. Covering tactile, thermal, ultrasound, microwave, electrical impedance tomography, electrochemical, microelectromechanical, and optical systems, it highlights innovations in flexible electronics, nanomaterials, and machine learning.
Neshika Wijewardhane +4 more
wiley +1 more source
Ultra‐Thin Soft Pneumatic Actuation for Minimally Invasive Neural Interfacing
Parylene C is a common polymer in bioelectronics, favored for its biological and chemical inertness. However, this makes bonding layers of Parylene C together very challenging. Here it is a laser to selectively weld layers of Parylene C to create high‐pressure fluidic actuation devices.
Lawrence Coles +4 more
wiley +1 more source

