Results 151 to 160 of about 771,068 (293)

Bioassembly of Region‐Specific Fibrocartilage Microtissues to Engineer Zonally Defined Meniscal Grafts

open access: yesAdvanced Healthcare Materials, EarlyView.
Meniscal microtissues are fabricated using progenitor cells isolated from the inner (iMPCs) and outer (oMPCs) regions of the meniscus. Meniscal microtissues fuse into cohesive constructs rich in sGAG and collagen. cABC treatment modulates collagen fiber formation and organization in assembled grafts.
Gabriela S. Kronemberger   +4 more
wiley   +1 more source

Microscopically Adaptable Bioink Guide Cell Compartmentalization toward Morphogenesis of a Functional Vasculature‐Like System

open access: yesAdvanced Healthcare Materials, EarlyView.
Contractile vasculatures are fabricated through a one‐step bioprinting strategy. The adaptable microenvironment provided by ECM‐mimicking bioink triggers cell sorting and compartmentalization of endothelial cells and vascular smooth muscle cells toward a histological configuration by focal adhesion kinase‐mediated upregulation of cell adhesion and ...
Jun Chen   +9 more
wiley   +1 more source

Uniting 4D Printing and Melt Electrowriting for the Enhancement of Regenerative Small Diameter Vascular Grafts

open access: yesAdvanced Healthcare Materials, EarlyView.
A hybrid 4D printing strategy enables the fabrication of shape‐morphing, mechanically reinforced tubular constructs for vascular tissue engineering. By combining alginate‐methylcellulose hydrogels with melt electrowritten polycaprolactone fibers and protein‐based functionalization, this platform supports spatially organized co‐cultures of fibroblasts ...
Max von Witzleben   +8 more
wiley   +1 more source

A Patient‐Specific 3D Printed Carotid Artery Model Integrating Vascular Structure, Flow, and Endothelium Responses

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces the first miniaturized, patient‐specific carotid artery model created via 3D printing using GelMA with embedded vascular cells. Combining CFD, PIV, and flow perfusion, the model replicates anatomically dependent hemodynamics and cellular responses.
Jorge A. Catano   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy