Results 71 to 80 of about 14,554 (282)
Estimating the irradiance spectrum from measurements in a limited number of spectral bands
Accurate measurement and characterisation of fluctuations in the irradiance environment is important for many areas of optical remote sensing. This paper describes a method of estimating spectral irradiance over the region 400 – 1000 nm from the radiance
Milton, E.J., Rollin, E.M.
core +1 more source
Electroactive Metal–Organic Frameworks for Electrocatalysis
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska +7 more
wiley +1 more source
Ab initio study of reflectance anisotropy spectra of a sub-monolayer oxidized Si(100) surface
The effects of oxygen adsorption on the reflectance anisotropy spectrum (RAS) of reconstructed Si(100):O surfaces at sub-monolayer coverage (first stages of oxidation) have been studied by an ab initio DFT-LDA scheme within a plane-wave, norm-conserving ...
A. Ramstad +11 more
core +1 more source
MOFs and COFs in Electronics: Bridging the Gap between Intrinsic Properties and Measured Performance
Metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) hold promise for advanced electronics. However, discrepancies in reported electrical conductivities highlight the importance of measurement methodologies. This review explores intrinsic charge transport mechanisms and extrinsic factors influencing performance, and critically ...
Jonas F. Pöhls, R. Thomas Weitz
wiley +1 more source
GeAl2‐2xFe2xO3(OH)4 Nanotubes: New Electrocatalyst for Oxygen Evolution Reaction
Fe‐doped imogolite nanotubes are synthesized via a one‐step hydrothermal method with varying Fe substitution ratios x. Structural and spectroscopic analyses confirm homogeneous Fe incorporation while preserving tubular shape. Optimal doping at x = 0.05 enhances optical absorption, narrows band gap, reduces charge transfer resistance, and significantly ...
Yassine Naciri +12 more
wiley +1 more source
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Non-uniform carrier density in Cd$_3$As$_2$ evidenced by optical spectroscopy
We report the detailed optical properties of Cd$_3$As$_2$ crystals in a wide parameter space: temperature, magnetic field, carrier concentration and crystal orientation. We investigate high-quality crystals synthesized by three different techniques.
Akrap, Ana +15 more
core +1 more source
Two‐Dimensional Materials as a Multiproperty Sensing Platform
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana +11 more
wiley +1 more source
Universal scaling relation in high-temperature superconductors
Scaling laws express a systematic and universal simplicity among complex systems in nature. For example, such laws are of enormous significance in biology. Scaling relations are also important in the physical sciences.
A Pimenov +42 more
core +1 more source
The study explores structural and magnetic properties of one of the most recent topological quantum materials (MnBi2Te4). The Mn‐poor structure leads to stacking faults (quintuple layer ‐ QL of Bi2Te3 formation instead of a septuple layer ‐ SL of MnBi2Te4), resulting in a coexistence between weak antiferromagnetism and ferromagnetism.
Wesley F. Inoch +10 more
wiley +1 more source

