Results 261 to 270 of about 6,034,940 (339)

Redox regulation meets metabolism: targeting PRDX2 to prevent hepatocellular carcinoma

open access: yesMolecular Oncology, EarlyView.
PRDX2 acts as a central redox hub linking metabolic dysfunction‐associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC). In normal hepatocytes, PRDX2 maintains redox balance and metabolic homeostasis under oxidative stress. In contrast, during malignant transformation, PRDX2 promotes oncogenic signaling, stemness, and tumor initiation ...
Naroa Goikoetxea‐Usandizaga   +2 more
wiley   +1 more source

R WE ready for reimbursement? A round up of developments in real-world evidence relating to health technology assessment: part 15

open access: yesJournal of Comparative Effectiveness Research
Alejandra Castanon   +2 more
doaj   +1 more source

Dammarenediol II enhances etoposide‐induced apoptosis by targeting O‐GlcNAc transferase and Akt/GSK3β/mTOR signaling in liver cancer

open access: yesMolecular Oncology, EarlyView.
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee   +8 more
wiley   +1 more source

Tumor mutational burden as a determinant of metastatic dissemination patterns

open access: yesMolecular Oncology, EarlyView.
This study performed a comprehensive analysis of genomic data to elucidate whether metastasis in certain organs share genetic characteristics regardless of cancer type. No robust mutational patterns were identified across different metastatic locations and cancer types.
Eduardo Candeal   +4 more
wiley   +1 more source

TRAIL‐PEG‐Apt‐PLGA nanosystem as an aptamer‐targeted drug delivery system potential for triple‐negative breast cancer therapy using in vivo mouse model

open access: yesMolecular Oncology, EarlyView.
Aptamers are used both therapeutically and as targeting agents in cancer treatment. We developed an aptamer‐targeted PLGA–TRAIL nanosystem that exhibited superior therapeutic efficacy in NOD/SCID breast cancer models. This nanosystem represents a novel biotechnological drug candidate for suppressing resistance development in breast cancer.
Gulen Melike Demirbolat   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy