Results 211 to 220 of about 63,696 (324)

Integrating Automated Electrochemistry and High‐Throughput Characterization with Machine Learning to Explore Si─Ge─Sn Thin‐Film Lithium Battery Anodes

open access: yesAdvanced Energy Materials, Volume 15, Issue 11, March 18, 2025.
A closed‐loop, data‐driven approach facilitates the exploration of high‐performance Si─Ge─Sn alloys as promising fast‐charging battery anodes. Autonomous electrochemical experimentation using a scanning droplet cell is combined with real‐time optimization to efficiently navigate composition space.
Alexey Sanin   +7 more
wiley   +1 more source

Overcompleteness of Sequences of Reproducing Kernels in Model Spaces

open access: green, 2005
Isabelle Chalendar   +2 more
openalex   +2 more sources

Machine Learning for Accelerating Energy Materials Discovery: Bridging Quantum Accuracy with Computational Efficiency

open access: yesAdvanced Energy Materials, EarlyView.
This perspective highlights how machine learning accelerates sustainable energy materials discovery by integrating quantum‐accurate interatomic potentials with property prediction frameworks. The evolution from statistical methods to physics‐informed neural networks is examined, showcasing applications across batteries, catalysts, and photovoltaics ...
Kwang S. Kim
wiley   +1 more source

Toward efficient quantum computation of molecular ground‐state energies

open access: yesAIChE Journal, EarlyView.
Abstract Variational quantum eigensolvers (VQEs) represent a promising approach to computing molecular ground states and energies on modern quantum computers. These approaches use a classical computer to optimize the parameters of a trial wave function, while the quantum computer simulates the energy by preparing and measuring a set of bitstring ...
Farshud Sorourifar   +8 more
wiley   +1 more source

Feature Selection for Machine Learning‐Driven Accelerated Discovery and Optimization in Emerging Photovoltaics: A Review

open access: yesAdvanced Intelligent Discovery, EarlyView.
Feature selection combined with machine learning and high‐throughput experimentation enables efficient handling of high‐dimensional datasets in emerging photovoltaics. This approach accelerates material discovery, improves process optimization, and strengthens stability prediction, while overcoming challenges in data quality and model scalability to ...
Jiyun Zhang   +5 more
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Home - About - Disclaimer - Privacy